首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3651篇
  免费   278篇
  国内免费   20篇
化学   2695篇
晶体学   13篇
力学   77篇
数学   558篇
物理学   606篇
  2023年   55篇
  2022年   79篇
  2021年   122篇
  2020年   173篇
  2019年   199篇
  2018年   85篇
  2017年   70篇
  2016年   209篇
  2015年   167篇
  2014年   176篇
  2013年   220篇
  2012年   303篇
  2011年   308篇
  2010年   186篇
  2009年   149篇
  2008年   232篇
  2007年   185篇
  2006年   185篇
  2005年   121篇
  2004年   85篇
  2003年   57篇
  2002年   50篇
  2001年   45篇
  2000年   36篇
  1999年   24篇
  1998年   27篇
  1997年   20篇
  1996年   16篇
  1995年   20篇
  1994年   23篇
  1993年   15篇
  1992年   19篇
  1991年   14篇
  1990年   13篇
  1989年   9篇
  1988年   11篇
  1987年   18篇
  1986年   8篇
  1985年   14篇
  1984年   16篇
  1983年   14篇
  1982年   9篇
  1981年   18篇
  1980年   15篇
  1979年   9篇
  1978年   14篇
  1977年   13篇
  1973年   7篇
  1972年   9篇
  1926年   7篇
排序方式: 共有3949条查询结果,搜索用时 31 毫秒
41.
A set of highly preorganized pyrazolate-bridged dimanganese complexes L(Mn)MnX have been prepared and structurally characterized. They can be described as hybrid organometallic/Werner-type systems that consist of a low-spin CpMn(I)(CO)2 subunit (Mn1) and a proximate tripodal tetradentate {N4} binding pocket accommodating a high-spin Mn(II) ion (Mn2), with Mn...Mn distances of approximately 4.3 A and different coligands bound to Mn2. Density functional theory (DFT) calculations (both the hybrid B3LYP and the pure BP86 functionals and the all-electron basis sets 6-311G and 6-311G*) confirm that the valence alpha and beta Kohn-Sham molecular orbitals (MOs) of these mixed-valent Mn(I)Mn(II) compounds have predominant Mn(3d) character and an almost perfectly localized nature: all five unpaired electrons are essentially localized at the Werner-type Mn2, whereas Mn1 possesses an effective closed-shell structure with the MOs of highest energy centered there. One-electron oxidation occurs in a clean process at approximately E(1/2) = -0.6 V (versus ferrocene/ferrocinium), giving the low-spin/high-spin Mn(II)Mn(II) species. UV/vis and IR spectroelectrochemistry as well as a detailed theoretical analysis reveal that the redox process takes place with strict site control at the organometallic subunit, while it does not significantly influence the spin and charge distribution on the Werner-type site. Positions and shifts of the nu(C[triple bond]O) absorptions are largely reproduced by the DFT calculations. These systems thus represent an exceptional example of the effect the unsymmetry of a dinucleating ligand scaffold has on the spin and charge distribution in homobimetallic complexes and might offer interesting prospects for the study of the cooperative effects of bimetallic arrays.  相似文献   
42.
Glycopolymers are receiving increasing interest due to their application in areas, such as glycomics, medicine, biotechnology, sensors, and separation science. Consequently, new methods for their synthesis are constantly being developed, with an increasing emphasis on the preparation of well-defined polymers and on the production of complex macromolecular architectures such as stars. This review covers recent developments in the synthesis of glycopolymers, with a particular emphasis on (i) the use of controlled radical polymerization to prepare well-defined glycopolymers from unprotected monomers and (ii) postpolymerization modification strategies using reactive polymer precursors (including “click” reactions). Recent work on the production of glycosylated polypeptides, which are under investigation as mimics of naturally occurring glycoproteins, is also included. The authors offer some suggestions as to future developments and remaining challenges in this topical area of polymer chemistry. © 2007 Wiley Periodicals, Inc. J Polym Sci PartA: Polym Chem45: 2059–2072, 2007  相似文献   
43.
The three-dimensional structure of a complex tubular uranyl phosphonate, (UO(2))(3)(HO(3)PC(6)H(5))(2)(O(3)PC(6)H(5))(2).H(2)O, was determined ab initio from laboratory X-ray powder diffraction data and refined by the Rietveld method. The crystals belong to the space group P2(1)2(1)2(1), with a = 17.1966(2) ?, b = 7.2125(2) ?, c = 27.8282(4) ?, and Z = 4. The structure consists of three independent uranium atoms, among which two are seven-coordinated and the third is eight-coordinated. These metal atoms are connected by four different phosphonate groups to form a one-dimensional channel structure along the b axis. The phenyl groups are arranged on the outer periphery of the channels, and their stacking forces keep the channels intact in the lattice. The determination of this structure which contains 50 non-hydrogen atoms in the asymmetric unit, from conventional X-ray powder data, represents significant progress in the application of powder techniques to structure solution of complex inorganic compounds, including organometallic compounds.  相似文献   
44.
The selective extraction of Na, K, Rb and Cs from rocks is described. The method is particularly designed for low levels of rubidium and cesium in basic and ultrabasic rocks. The rocks are decomposed with lithium hydroxide solution at 180°C. Only part of the aluminium and chromium accompany the alkali metals into solution; all other rock constitutents are left behind as insoluble lithium silicate, hydroxides of divalent metals, etc. Concentration of rubidium and cesium too low to be determined directly by flame emission spectrometry are pre-concentrated up to 25-fold by liquid-liquid extraction. Quantitative recovery (>99.5%) of the two metals is achieved by coprecipitation with potassium tetraphenylboron within the organic phase (di-isobutyl ketone) for subsequent back-extraction and dissolution in an acidic aqueous phase. Detection limits are 1 mg kg?1 Na or K, 0.1 mg kg?1 Rb and 0.05 mg kg?1 Cs in the rock for the direct determination and 0.003 mg kg?1 Rb and 0.001 mg kg?1 Cs after preconcentration. Methods are described for the purification of lithium hydroxide and the potassium nitrate used as carrier. Results are presented for the Na2 O, K2O, Rb and Cs contents and the K/Rb values for 23 geochemical references samples (basic and ultrabasic rocks, and iron formation samples).  相似文献   
45.
Sm(II)-modified periodic mesoporous silica (PMS), Sm[N(SiHMe2)2]2(THF)x@MCM-41, was used for the synthesis of Sm(II) alkyl, alkoxide, and indenyl surface species via secondary ligand exchange. The performance of the novel Sm(II)-based organometallic–inorganic hybrid materials as initiators for the graft polymerization of methyl methacrylate (MMA) is reported. All of the Sm(II) hybrid materials including the new PMMA–PMS composites were characterized via N2 physisorption, elemental analysis, FTIR spectroscopy, and scanning electron microscopy (SEM). The organic–inorganic composites revealed complete pore blockage as well as enrichment and strong adhesion of the polymer at the exterior of the porous silica material.  相似文献   
46.
The "epimerisation" of UDP-GlcNAc to ManNAc, the first step in the biosynthesis of sialic acids, is catalyzed by UDP-GlcNAc 2-epimerase. In this paper we report the synthesis of transition state based inhibitors of this enzyme. To mimic the assumed first transition state of this reaction (TS 1), we designed and synthesized the novel UDP-exo-glycal derivatives 1-4. We also report herein the synthesis of 5 and 6, the first C-glycosidic derivatives of 2-acetamidoglucal, and the synthesis of the ketosides 7 and 8, which were designed as bis-substrate analogue and bis- product analogue, respectively, to mimic the second step of the reaction via the assumed second transition state TS 2.  相似文献   
47.
The crystal structures of molecular complexes betweenmeso- 1,2-diphenyl-1,2-ethanediol and two bisimines (N,N-(dibenzylidene)-ethylenediamine and glyoxylidene-bis(2,4-dimethyl-3-pentyl-amine) are reported at different temperatures. The structure-determining motif of the cocrystalline arrangement is one single O-H . N hydrogen bond resulting in infinite ladderlike polymers. The supramolecular structure is formed by recognition of fitting species: Thed- orl-isomers do not arrange in such structures.1H NMR experiments show that no prearrangements take place by forming complexes in solution.  相似文献   
48.
The ligands 4-7-H(2) were used in coordination studies with titanium(IV) and gallium(III) ions to obtain dimeric complexes Li(4)[(4-7)(6)Ti(2)] and Li(6)[(4/5a)(6)Ga(2)]. The X-ray crystal structures of Li(4)[(4)(6)Ti(2)], Li(4)[(5b)(6)Ti(2)], and Li(4)[(7a)(6)Ti(2)] could be obtained. While these complexes are triply lithium-bridged dimers in the solid state, a monomer/dimer equilibrium is observed in solution by NMR spectroscopy and ESI FT-ICR MS. The stability of the dimer is enhanced by high negative charges (Ti(IV) versus Ga(III)) of the monomers, when the carbonyl units are good donors (aldehydes versus ketones and esters), when the solvent does not efficiently solvate the bridging lithium ions (DMSO versus acetone), and when sterical hindrance is minimized (methyl versus primary and secondary carbon substituents). The dimer is thermodynamically favored by enthalpy as well as entropy. ESI FT-ICR mass spectrometry provides detailed insight into the mechanisms with which monomeric triscatecholate complexes as well as single catechol ligands exchange in the dimers. Tandem mass spectrometric experiments in the gas phase show the dimers to decompose either in a symmetric (Ti) or in an unsymmetric (Ga) fashion when collisionally activated. The differences between the Ti and Ga complexes can be attributed to different electronic properties and a charge-controlled reactivity of the ions in the gas phase. The complexes represent an excellent example for hierarchical self-assembly, in which two different noncovalent interactions of well balanced strengths bring together eleven individual components into one well-defined aggregate.  相似文献   
49.
To mimic the electron-donor side of photosystem II (PSII), three trinuclear ruthenium complexes (2, 2a, 2b) were synthesized. In these complexes, a mixed-valent dinuclear Ru2(II,III) moiety with one phenoxy and two acetato bridges is covalently linked to a Ru(II) tris-bipyridine photosensitizer. The properties and photoinduced electron/energy transfer of these complexes were studied. The results show that the Ru2(II,III) moieties in the complexes readily undergo reversible one-electron reduction and one-electron oxidation to give the Ru2(II,III) and Ru2(III,III) states, respectively. This could allow for photooxidation of the sensitizer part with an external acceptor and subsequent electron transfer from the dinuclear ruthenium moiety to regenerate the sensitizer. However, all trinuclear ruthenium complexes have a very short excited-state lifetime, in the range of a few nanoseconds to less than 100 ps. Studies by femtosecond time-resolved techniques suggest that a mixture of intramolecular energy and electron transfer between the dinuclear ruthenium moiety and the excited [Ru(bpy)3]2+ photosensitizer is responsible for the short lifetimes. This problem is overcome by anchoring the complexes with ester- or carboxyl-substituted bipyridine ligands (2a, 2b) to nanocrystalline TiO2, and the desired electron transfer from the excited state of the [Ru(bpy)3]2+ moiety to the conduction band of TiO2 followed by intramolecular electron transfer from the dinuclear Ru2(II,III) moiety to photogenerated Ru(III) was observed. The resulting long-lived Ru2(III,III) state decays on the millisecond timescale.  相似文献   
50.
Synthesis and Characterization of New Intramolecularly Nitrogen‐stabilized Organoaluminium‐ and Organogallium Alkoxides The intramolecularly nitrogen stabilized organoaluminium alkoxides [Me2Al{μ‐O(CH2)3NMe2}]2 ( 1a ), Me2AlOC6H2(CH2NMe2)3‐2,4,6 ( 2a ), [(S)‐Me2Al{μ‐OCH2CH(i‐Pr)NH‐i‐Pr}]2 ( 3a ) and [(S)‐Me2Al{μ‐OCH2CH(i‐Pr)NHCH2Ph}]2 ( 4 ) are formed by reacting equimolar amounts of AlMe3 and Me2N(CH2)3OH, C6H2[(CH2NMe2)3‐2,4,6]OH, (S)‐i‐PrNHCH(i‐Pr)CH2OH, or (S)‐PhCH2NHCH(i‐Pr)CH2OH, respectively. An excess of AlMe3 reacts with Me2N(CH2)2OH, Me2N(CH2)3OH, C6H2[(CH2NMe2)3‐2,4,6]OH, and (S)‐i‐PrNHCH(i‐Pr)CH2OH producing the “pick‐a‐back” complexes [Me2AlO(CH2)2NMe2](AlMe3) ( 5 ), [Me2AlO(CH2)3NMe2](AlMe3) ( 1b ), [Me2AlOC6H2(CH2NMe2)3‐2,4,6](AlMe3)2 ( 2b ), and [(S)‐Me2AlOCH2CH(i‐Pr)NH‐i‐Pr](AlMe3) ( 3b ), respectively. The mixed alkyl‐ or alkenylchloroaluminium alkoxides [Me(Cl)Al{μ‐O(CH2)2NMe2}]2 ( 6 ) and [{CH2=C(CH3)}(Cl)Al{μ‐O(CH2)2NMe2}]2 ( 8 ) are to obtain from Me2AlCl and Me2N(CH2)2OH and from [Cl2Al{μ‐O(CH2)2NMe2}]2 ( 7 ) and CH2=C(CH3)MgBr, respectively. The analogous dimethylgallium alkoxides [Me2Ga{μ‐O(CH2)3NMe2}]2 ( 9 ), [(S)‐Me2Ga{μ‐OCH2CH(i‐Pr)NH‐i‐Pr}]n ( 10 ), [(S)‐Me2Ga{μ‐OCH2CH(i‐Pr)NHCH2Ph}]n ( 11 ), [(S)‐Me2Ga{μ‐OCH2CH(i‐Pr)N(Me)CH2Ph}]n ( 12 ) and [(S)‐Me2Ga{μ‐OCH2(C4H7NHCH2Ph)}]n ( 13 ) result from the equimolar reactions of GaMe3 with the corresponding alcohols. The new compounds were characterized by elemental analyses, 1H‐, 13C‐ and 27Al‐NMR spectroscopy, and mass spectrometry. Additionally, the structures of 1a , 1b , 2a , 2b , 3a , 5 , 6 and 8 were determined by single crystal X‐ray diffraction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号