首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   429篇
  免费   9篇
  国内免费   2篇
化学   270篇
晶体学   2篇
力学   4篇
数学   91篇
物理学   73篇
  2023年   3篇
  2022年   9篇
  2021年   8篇
  2020年   21篇
  2019年   14篇
  2018年   10篇
  2017年   4篇
  2016年   14篇
  2015年   7篇
  2014年   9篇
  2013年   28篇
  2012年   36篇
  2011年   28篇
  2010年   19篇
  2009年   23篇
  2008年   25篇
  2007年   25篇
  2006年   18篇
  2005年   20篇
  2004年   12篇
  2003年   11篇
  2002年   11篇
  2001年   9篇
  1999年   1篇
  1998年   4篇
  1997年   5篇
  1996年   1篇
  1995年   6篇
  1994年   2篇
  1993年   4篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   5篇
  1984年   4篇
  1983年   3篇
  1982年   7篇
  1981年   3篇
  1980年   6篇
  1979年   2篇
  1978年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1966年   1篇
  1960年   1篇
  1958年   1篇
排序方式: 共有440条查询结果,搜索用时 15 毫秒
41.
The rare‐earth metal germanides RE2Ge9 (RE = Nd, Sm) have been prepared by thermal decomposition of the metastable high‐pressure phases REGe5 at ambient pressure. The compounds adopt an orthorhombic unit cell with a = 396.34(4) pm; b = 954.05(8) pm and c = 1238.4(1) pm for Nd2Ge9 and a = 395.46(7) pm; b = 946.4(2) pm and c = 1232.1(3) pm for Sm2Ge9. Crystal structure refinements reveal space group Pmmn (No. 59) for Nd2Ge9. The atomic pattern resembles an ordered defect variety of the pentagermanide motif REGe5 (RE = La; Nd, Sm, Gd, Tb) comprising corrugated germanium layers. These condense into a three‐dimensional network interconnected by eight‐coordinated germanium atoms. The resulting framework channels along [100] enclose the neodymium atoms. With respect to the atomic arrangement of the pentagermanides, half of the interlayer germanium atoms are eliminated in an ordered way so that occupied and empty germanium columns alternate along [001]. The rare‐earth metal atoms of both types of compounds, REGe5 and RE2Ge9, exhibit the electronic states 4f 3 and 4f 5 (oxidation state +3) for neodymium and samarium, respectively, evidencing that the modification of the germanium network leaves the electron configuration of the metal atoms unaffected.  相似文献   
42.
Low-pressure adsorption of carbon dioxide and nitrogen was studied in both acidic and copper-exchanged forms of SSZ-13, a zeolite containing an 8-ring window. Under ideal conditions for industrial separations of CO(2) from N(2), the ideal adsorbed solution theory selectivity is >70 in each compound. For low gas coverage, the isosteric heat of adsorption for CO(2) was found to be 33.1 and 34.0 kJ/mol for Cu- and H-SSZ-13, respectively. From in situ neutron powder diffraction measurements, we ascribe the CO(2) over N(2) selectivity to differences in binding sites for the two gases, where the primary CO(2) binding site is located in the center of the 8-membered-ring pore window. This CO(2) binding mode, which has important implications for use of zeolites in separations, has not been observed before and is rationalized and discussed relative to the high selectivity for CO(2) over N(2) in SSZ-13 and other zeolites containing 8-ring windows.  相似文献   
43.
The reactions of S-4-nitrophenyl 4-X-substituted thiobenzoates (X = H, Cl, and NO(2): 1, 2, and 3, respectively) with a series of secondary alicyclic amines (SAA) were subjected to a kinetic investigation in 44 wt % ethanol-water, at 25.0 degrees C and an ionic strength of 0.2 M (KCl). The reactions were followed spectrophotometrically by monitoring the release of 4-nitrobenzenethiolate anion at 420-425 nm. Under excess amine, pseudo-first-order rate constants (k(obsd)) are obtained for all reactions. The plots of k(obsd) vs [SAA] at constant pH are linear with the slope (k(N)) independent of pH. The statistically corrected Br?nsted-type plots (log k(N)/q vs pK(a) + log p/q) for the reactions of 1 and 2 are nonlinear with slopes at high pK(a), beta(1) = 0.27 and 0.10, respectively, and slopes at low pK(a), beta(2) = 0.86 and 0.84, respectively. The Br?nsted curvature is centered at pK(a) (pK(a)(0)) 10.0 and 10.4, respectively. The reactions of SAA with 3 exhibit a linear Br?nsted-type plot of slope 0.81. These results are consistent with a stepwise mechanism, through a zwitterionic tetrahedral intermediate (T(+/-)). For the reactions of 1 and 2, there is a change in rate-determining step with amine basicity, from T(+/-) breakdown to products at low pK(a), to T(+/-) formation at high pK(a). For the reactions of 3, breakdown to products of T(+/-) is rate limiting for all the SAA series (pK(a)(0) > 11). The increasing pK(a)(0) value as the substituent in the acyl group becomes more electron withdrawing is attributed to an increasing nucleofugality of SAA from T(+/-). The greater pK(a)(0) value for the reactions of SAA with 1, relative to that found in the pyridinolysis of 2,4-dinitrophenyl benzoate (pK(a)(0) = 9.5), is explained by the greater nucleofugality from T(+/-) of the former amines, compared to isobasic pyridines, and the greater leaving ability from T(+/-) of 2,4-dinitrophenoxide relative to 4-nitrobenzenethiolate.  相似文献   
44.
We present an end-to-end computational system for autonomous materials discovery. The system aims for cost-effective optimization in large, high-dimensional search spaces of materials by adopting a sequential, agent-based approach to deciding which experiments to carry out. In choosing next experiments, agents can make use of past knowledge, surrogate models, logic, thermodynamic or other physical constructs, heuristic rules, and different exploration–exploitation strategies. We show a series of examples for (i) how the discovery campaigns for finding materials satisfying a relative stability objective can be simulated to design new agents, and (ii) how those agents can be deployed in real discovery campaigns to control experiments run externally, such as the cloud-based density functional theory simulations in this work. In a sample set of 16 campaigns covering a range of binary and ternary chemistries including metal oxides, phosphides, sulfides and alloys, this autonomous platform found 383 new stable or nearly stable materials with no intervention by the researchers.

We present an end-to-end computational system for autonomous materials discovery.  相似文献   
45.
46.
47.
Molybdenum disulfide nanosheets covalently modified with porphyrin were prepared and fully characterized. Neither the porphyrin absorption nor its fluorescence was notably affected by covalent linkage to MoS2. The use of transient absorption spectroscopy showed that a complex ping‐pong energy‐transfer mechanism, namely from the porphyrin to MoS2 and back to the porphyrin, operated. This study reveals the potential of transition‐metal dichalcogenides in photosensitization processes.  相似文献   
48.
Realizing the full potential of oxide‐supported single‐atom metal catalysts (SACs) is key to successfully bridge the gap between the fields of homogeneous and heterogeneous catalysis. Here we show that the one‐pot combination of Ru1/CeO2 and Rh1/CeO2 SACs enables a highly selective olefin isomerization‐hydrosilylation tandem process, hitherto restricted to molecular catalysts in solution. Individually, monoatomic Ru and Rh sites show a remarkable reaction specificity for olefin double‐bond migration and anti‐Markovnikov α‐olefin hydrosilylation, respectively. First‐principles DFT calculations ascribe such selectivity to differences in the binding strength of the olefin substrate to the monoatomic metal centers. The single‐pot cooperation of the two SACs allows the production of terminal organosilane compounds with high regio‐selectivity (>95 %) even from industrially‐relevant complex mixtures of terminal and internal olefins, alongside a straightforward catalyst recycling and reuse. These results demonstrate the significance of oxide‐supported single‐atom metal catalysts in tandem catalytic reactions, which are central for the intensification of chemical processes.  相似文献   
49.
50.
Realizing the full potential of oxide-supported single-atom metal catalysts (SACs) is key to successfully bridge the gap between the fields of homogeneous and heterogeneous catalysis. Here we show that the one-pot combination of Ru1/CeO2 and Rh1/CeO2 SACs enables a highly selective olefin isomerization-hydrosilylation tandem process, hitherto restricted to molecular catalysts in solution. Individually, monoatomic Ru and Rh sites show a remarkable reaction specificity for olefin double-bond migration and anti-Markovnikov α-olefin hydrosilylation, respectively. First-principles DFT calculations ascribe such selectivity to differences in the binding strength of the olefin substrate to the monoatomic metal centers. The single-pot cooperation of the two SACs allows the production of terminal organosilane compounds with high regio-selectivity (>95 %) even from industrially-relevant complex mixtures of terminal and internal olefins, alongside a straightforward catalyst recycling and reuse. These results demonstrate the significance of oxide-supported single-atom metal catalysts in tandem catalytic reactions, which are central for the intensification of chemical processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号