Let E be a finite set of points in d. Then {A, E ? A} is a non-Radon partition of E iff there is a hyperplane H separating A strictly from E?A. Or equivalently iff is an acyclic reorientation of (MAff(E), O), the oriented matroid canonically determined by E. If (M(E), O) is an oriented matroid without loops then the set determines (M(E), O). In particular the matroidal properties of a finite set of points in d are precisely the properties which can be formulated in non-Radon partitions terms. The Möbius function of the poset and in a special case its homotopy type are computed. This paper generalizes recent results of P. Edelman (A partial order on the regions of n dissected by hyperplanes 相似文献
Current energy demand makes it compulsory to explore alternative energy sources beyond fossil fuels. Molecular solar thermal (MOST) systems have been proposed as a suitable technology for the use and storage of solar energy. Compounds used for this application need to fulfil a long series of requirements, being the absorption of sunlight and the energy stored some of the most critical. In this paper, we study different families of well-known molecular photoswitches from the point of view of their potential use as MOST. Starting from basic structures, we use density functional theory (DFT) computational modelling to propose two different strategies to increase the energy difference between isomers and to tune the absorption spectrum. The inclusion of a mechanical lock in the structure, via an alkyl chain and the presence of a hydrogen bonding are shown to directly influence the energy difference and the absorption spectra. Results shown here prove that these two approaches could be relevant for the design of new compounds with improved performance for MOST applications. 相似文献
Polycyclic aromatic sulphur heterocyclic (PASH) compounds, such as dibenzothiophene (DBT) and alkylated derivatives are used as model compounds in biodesulfurization processes. The development of these processes is focused on the reduction of the concentration of sulphur in gasoline and gas–oil [D.J. Monticello, Curr. Opin. Biotechnol. 11 (2000) 540], in order to meet European Union and United States directives.
The evaluation of biodesulfurization processes requires the development of adequate analytical techniques, allowing the identification of any transformation products generated. The identification of intermediates and final products permits the evaluation of the degradation process.
In this work, seven sulfurated compounds and one non-sulfurated compound have been selected to develop an extraction method and to compare the sensitivity and identification capabilities of three different gas chromatography ionization modes. The selected compounds are: dibenzothiophene (DBT), 4-methyl-dibenzothiophene (4-m-DBT), 4,6-dimethyl-dibenzothiophene (4,6-dm-DBT) and 4,6 diethyl-dibenzothiophene (4,6 de-DBT), all of which can be used as model compounds in biodesulfurization processes; as well as dibenzothiophene sulfoxide (DBTO2), dibenzothiophene sulfone (DBTO) and 2-(2-hydroxybiphenyl)-benzenesulfinate (HBPS), which are intermediate products in biodesulfurization processes of DBT [ A. Alcon, V.E. Santos, A.B. Martín, P. Yustos, F. García-Ochoa, Biochem. Eng. J. 26 (2005) 168]. Furthermore, a non-sulfurated compound, 2-hydroxybiphenyl (2-HBP), has also been selected as it is the final product in the biodesulfurization process of DBT [A. Alcon, V.E. Santos, A.B. Martín, P. Yustos, F. García-Ochoa. Biochem. Eng. J. 26 (2005) 168].
Since, typically, biodesulfurization reactions take place in a biphasic medium, two extraction methods have been developed: a liquid–liquid extraction method for the watery phase and a solid phase extraction method for the organic phase. Recoveries of the selected compound in both media were studied. They were in the range of 80–100% for the watery and in the range of 40–60% for the organic phase, respectively.
Gas chromatography coupled to mass spectrometry (GC–MS) has been employed for the identification of these selected compounds. Three different ionization modes were applied: conventional electron impact (EI); positive chemical ionization (PCI), using methane as the reagent gas; and a recently developed ionization mode known as hybrid chemical ionization (HCI), using perfluorotri-n-butylamine as the reagent gas. Limits of detection and identification capabilities have been compared between the three analytical techniques.
The sensitivity of the three analytical techniques was studied and LOD between 0.05 and 1, between 0.09 and 2 and between 0.001 and 0.043 were achieved for PCI, EI and HCI, respectively.
The developed method was applied in samples from a biodesulfurization process. The biodesulfurization reactions were conducted in resting cell operation mode, using Erlenmeyer flasks or an agitated tank bioreactor. The microorganism employed was Pseudomonas putida CECT 5279. The reaction was performed under controlled air flow, stirring and temperature conditions. 相似文献
Quantitative electron probe microanalysis of highly insulating materials is a complicated problem, partially solved by coating
samples with grounded thin conductive layers or using novel scanning electron microscopy (SEM) techniques, such as low-voltage
and/or variable pressure SEM. In this work, some problems of quantitative X-ray microanalysis of thin HfO2 films, in particular the possibility to determine mass thickness correlated to the density of the layer material, are discussed.
For comparison, Al2O3, Ta2O5 and TiO2 films grown onto both semiconductive Si and insulating quartz substrates were also analysed. All the films studied were synthesized
by atomic layer deposition method. 相似文献
The crystal structure of 5-methyl-acetophenonethiosemicarbazone monohydrate,A, and salicylaldehyde-2-methylthiosemicarbazone monohydrate,B, were determined using single crystal X-ray diffraction.A crystallizes in the monoclinic space groupC2/c, with lattice parametersa=14.161(2),b=15.753(1) ?,c=11.084(1) ?, β=112.59(1)° andZ=4, yielding a calculated density ofDcalc=1.352 mg/m3.B crystallizes in the triclinic space groupP1, witha=7.233(2) ?,b=7.371(2) ?,c=11.841(2) ?, α=82.77(2)°, β=78.33(2)°, γ=63.06(2)° andDcalc=1.371 mg/m3 forZ=2,. In bothA andB the immine nitrogen and the sulfur atom areanti with respect to N2-C8. WhileA presents the usual intramolecular six membered hydrogen bond ring,B has instead an intermolecular hydrogen bond between the hydroxy moiety of the salicyladehyde and a water molecule. AM1 calculations
agree with the experimental conformations observed in both compounds.
Contribution No. 1619 of the Instituto de Química, UNAM. 相似文献
Achieving stability with highly active Ru nanoparticles for electrocatalysis is a major challenge for the oxygen evolution reaction. As improved stability of Ru catalysts has been shown for bulk surfaces with low‐index facets, there is an opportunity to incorporate these stable facets into Ru nanoparticles. Now, a new solution synthesis is presented in which hexagonal close‐packed structured Ru is grown on Au to form nanoparticles with 3D branches. Exposing low‐index facets on these 3D branches creates stable reaction kinetics to achieve high activity and the highest stability observed for Ru nanoparticle oxygen evolution reaction catalysts. These design principles provide a synthetic strategy to achieve stable and active electrocatalysts. 相似文献
Metal‐catalysed reactions are a fundamental tool in synthetic chemistry. Increasingly challenging transformations can be accomplished only by means of certain metal catalysts. However, there still remains the need for a substantial decrease of the amount of catalyst, for better reuse or recycling of such active species, and for the avoidance of relatively toxic solvents in favour of environmentally friendly media. These facts apply to copper‐, palladium‐, and nickel‐catalysed cross‐coupling reactions, direct arylations, and oxidative processes. This account summarises our research on the last reactions, featuring an evolution towards more sustainable procedures in this field. 相似文献