首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   0篇
化学   127篇
晶体学   3篇
力学   4篇
数学   11篇
物理学   29篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   6篇
  2014年   7篇
  2013年   18篇
  2012年   8篇
  2011年   6篇
  2010年   7篇
  2009年   7篇
  2008年   4篇
  2007年   11篇
  2006年   9篇
  2005年   3篇
  2004年   6篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   5篇
  1995年   3篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   4篇
  1987年   3篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1981年   5篇
  1980年   2篇
  1979年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1968年   2篇
  1967年   1篇
  1962年   2篇
  1957年   3篇
  1918年   1篇
排序方式: 共有174条查询结果,搜索用时 31 毫秒
101.
Natural fiber-reinforced nanocomposites were prepared by incorporating wild cane grass fiber and organically modified montmorillonite (MMT) nanoclay into polyester resin. The composites were formulated up to a maximum volume of fiber of approximately 40% and their mechanical properties were investigated. The mean tensile strength and tensile modulus of nanoclay-filled wild cane grass fiber composites are 6.3% and 18.3% greater than those of wild cane grass fiber composites, respectively, without addition of nanoclay at maximum percentage volume of fiber. The mean flexural strength of nanocomposites at maximum percentage volume of fiber was increased to a maximum of 221 Mpa and flexural modulus to 4.2 Gpa. The mean impact strength of nanoclay-filled wild cane grass fiber composites was increased to 376.7 J/m at maximum percentage volume of fiber. The weight loss of nanoclay-filled wild cane grass fiber/polyester composites was 30% and 22% less than that of composites without nanoclay at maximum percentage volume of fiber. The results indicated that the use of nanoclay showed significant improvement in all the mechanical properties of wild cane grass fiber-reinforced composites.  相似文献   
102.
The potential of using ensiling, with and without supplemental enzymes, as a cost-effective pretreatment for bioethanol production from agricultural residues was investigated. Ensiling did not significantly affect the lignin content of barley straw, cotton stalk, and triticale hay ensiled without enzyme, but slightly increased the lignin content in triticale straw, wheat straw, and triticale hay ensiled with enzyme. The holocellulose (cellulose plus hemicellulose) losses in the feedstocks, as a result of ensiling, ranged from 1.31 to 9.93%. The percent holocellulose loss in hays during ensiling was lower than in straws and stalks. Ensiling of barley, triticale, wheat straws, and cotton stalk significantly increased the conversion of holocellulose to sugars during subsequent hydrolysis with two enzyme combinations. Enzymatic hydrolysis of ensiled and untreated feedstocks by Celluclast 1.5 L-Novozyme 188 enzyme combination resulted in equal or higher saccharification than with Spezyme CP-xylanase combination. Enzyme loadings of 40 and 60 FPU/g reducing sugars gave similar sugar yields. The percent saccharification with Celluclast 1.5 L-Novozyme 188 at 40 FPU/g reducing sugars was 17.1 to 43.6%, 22.4 to 46.9%, and 23.2 to 32.2% for untreated feedstocks, feedstocks ensiled with, and without enzymes, respectively. Fermentation of the hydrolysates from ensiled feedstocks resulted in ethanol yields ranging from 0.21 to 0.28 g/g reducing sugars.  相似文献   
103.
Production of bioethanol from agricultural residues and hays (wheat, barley, and triticale straws, and barley, triticale, pearl millet, and sweet sorghum hays) through a series of chemical pretreatment, enzymatic hydrolysis, and fermentation processes was investigated in this study. Composition analysis suggested that the agricultural straws and hays studied contained approximately 28.62-38.58% glucan, 11.19-20.78% xylan, and 22.01-27.57% lignin, making them good candidates for bioethanol production. Chemical pretreatment with sulfuric acid or sodium hydroxide at concentrations of 0.5, 1.0, and 2.0% indicated that concentration and treatment agent play a significant role during pretreatment. After 2.0% sulfuric acid pretreatment at 121 degrees C/15 psi for 60 min, 78.10-81.27% of the xylan in untreated feedstocks was solubilized, while 75.09-84.52% of the lignin was reduced after 2.0% sodium hydroxide pretreatment under similar conditions. Enzymatic hydrolysis of chemically pretreated (2.0% NaOH or H2SO4) solids with Celluclast 1.5 L-Novozym 188 (cellobiase) enzyme combination resulted in equal or higher glucan and xylan conversion than with Spezyme(R) CP- xylanase combination. The glucan and xylan conversions during hydrolysis with Celluclast 1.5 L-cellobiase at 40 FPU/g glucan were 78.09 to 100.36% and 74.03 to 84.89%, respectively. Increasing the enzyme loading from 40 to 60 FPU/g glucan did not significantly increase sugar yield. The ethanol yield after fermentation of the hydrolyzate from different feedstocks with Saccharomyces cerevisiae ranged from 0.27 to 0.34 g/g glucose or 52.00-65.82% of the theoretical maximum ethanol yield.  相似文献   
104.
There is a pressing need to improve the reproducibility of surface enhanced Raman spectroscopy (SERS) measurements, if the technique is to be used routinely for trace analysis. This is particularly true for colloidal SERS, in which data reproducibility is dominated by the final shape and size of metal clusters produced during colloid aggregation. This study presents general guidelines for designing appropriate measurement strategies that can be used to identify and optimise crucial steps in a protocol that leads to better reproducibility of the results. We show that the data reproducibility can be improved by optimising vortexing time during colloid aggregation, which we attribute to the formation of more reproducible metal clusters under conditions of ‘forced convection’. The study also investigated the effects of different storage conditions on the data reproducibility of SERS during a 6‐month study period. Storage conditions did not significantly influence the SERS reproducibility. However, at the end of 6 months, colloids that were stored (in plastic containers) at room temperature showed a difference in their quality, as mirrored by their different opto‐physical properties. This was made apparent through the analysis of UV‐vis spectroscopy measurements by principal component analysis. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
105.
Evan Papageorgiou  Ronnie Sircar 《PAMM》2007,7(1):1081301-1081302
We discuss a computationally tractable approach to the valuation of multiname credit derivatives employing name grouping for dimension reduction, and singular perturbation approximations for model robustness. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
106.
Parametric Study of a Pressure Swing Adsorption Process   总被引:2,自引:0,他引:2  
The performance of a pressure swing adsorption (PSA) process for production of high purity hydrogen from a binary methane-hydrogen mixture is simulated using a detailed, adiabatic PSA model. An activated carbon is used for selective adsorption of methane over hydrogen. The effects of various independent process variables (feed gas pressure and composition, purge gas pressure and quantity, configuration of process steps) on the key dependent process variables (hydrogen recovery at high purity, hydrogen production capacity) are evaluated. It is demonstrated that many different combinations of PSA process steps, their operating conditions, and the feed gas conditions can be chosen to produce an identical product gas with different hydrogen recovery and productivity.  相似文献   
107.
Journal of Solid State Electrochemistry - In present study, hollow urchin-like nanostructures of Nb2O5 with elongated nanofilaments as photoanode material for dye-sensitized solar cells (DSSCs) are...  相似文献   
108.
Bhowmik  Ratul  Manaithiya  Ajay  Vyas  Bharti  Nath  Ranajit  Rehman  Sara  Roy  Shubham  Roy  Ratna 《Structural chemistry》2022,33(3):815-831
Structural Chemistry - The Ebola virus is a deadly pathogen that causes a highly lethal hemorrhagic fever illness in humans, sometimes known as Ebola virus sickness (EVD). The Ebola virus...  相似文献   
109.
Nine new transition‐metal dithiocarbamates involving ferrocene (Fc), namely, [M(FcCH2Bzdtc)2] (M=NiII ( 1 ), CuII ( 2 ), CdII ( 3 ), HgII ( 4 ), PdII ( 5 ), PtII ( 6 ) and PbII ( 7 ); Bzdtc=N‐benzyl dithiocarbamate) and [M(FcCH2Bzdtc)3] (M=CoII ( 8 ) and UO2VI ( 9 )), have been synthesised and characterised by micro analyses, IR spectroscopy, 1H and 13C NMR spectroscopy, and in three cases by single‐crystal X‐ray analysis. The peak broadening in the 1H spectrum of the copper complex indicates the paramagnetic behaviour of this compound. A square‐planar geometry around the nickel and copper complexes and distorted linear geometry around the mercury complex have been found. The latter geometry is attributed to the bulkiness of the methylferrocenyl and benzyl groups. The observed single quasi‐reversible cyclic voltammograms for complexes 2 , 8 and 9 indicate the stabilisation of a metal centre other than Fe in their characteristic oxidation state. These complexes have been used as a photosensitiser in dye‐sensitised solar cells.  相似文献   
110.
The effects of the sorption and the regeneration temperatures on the performance of a novel rapid thermal swing chemisorption (RTSC) process (Lee and Sircar in AIChE J. 54:2293–2302, 2008) for removal and recovery of CO2 from an industrial flue gas without pre-compression, pre-drying, or pre-cooling of the gas were mathematically simulated. The process directly produced a nearly pure, compressed CO2 by-product stream which will facilitate its subsequent sequestration. Na2O promoted alumina was used as the CO2 selective chemisorbent, and the preferred temperatures were found to be, respectively, 150 and 450 °C for the sorption and regeneration steps of the process. The specific cyclic CO2 production capacity of the process and the pressure of the by-product CO2 gas were substantially increased over those previously achieved by using the sorption and regeneration temperature of, respectively, 200 and 500 °C (Lee and Sircar in AIChE J. 54:2293–2302, 2008). The net compressed CO2 recovery from the flue gas (∼92%) did not change. However, substantially different amounts of high and low pressure steam purges were necessary for comparable degree of desorption of CO2. A first pass estimation of the capital and the operating costs of the RTSC process was carried out for a relatively moderate size application (flue gas clean up and CO2 recovery from a ∼80 MW coal fired power plant). Both costs were substantially lower than those for a conventional absorption process using MEA as the CO2 solvent (Desideri and Paolucci in Energy Convers. Manag. 40:1899–1915, 1999).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号