首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   462篇
  免费   29篇
  国内免费   4篇
化学   299篇
晶体学   2篇
力学   14篇
数学   56篇
物理学   124篇
  2023年   8篇
  2022年   17篇
  2021年   23篇
  2020年   18篇
  2019年   24篇
  2018年   16篇
  2017年   15篇
  2016年   20篇
  2015年   16篇
  2014年   25篇
  2013年   28篇
  2012年   49篇
  2011年   31篇
  2010年   23篇
  2009年   27篇
  2008年   22篇
  2007年   16篇
  2006年   9篇
  2005年   12篇
  2004年   5篇
  2003年   8篇
  2002年   10篇
  2001年   6篇
  2000年   5篇
  1998年   3篇
  1997年   3篇
  1993年   1篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   5篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1973年   4篇
  1970年   2篇
  1969年   2篇
  1968年   4篇
  1967年   1篇
  1966年   1篇
排序方式: 共有495条查询结果,搜索用时 62 毫秒
101.
In this work,three-dimensional molecular dynamics simulation is carried out to elucidate the nanoindentation behaviour of single crystal Ni.The substrate indenter system is modelled using hybrid interatomic potentials including the manybody potential(embedded atom method) and two-body Morse potential.The spherical indenter is chosen,and the simulation is performed for different loading rates from 10 m/s to 200 m/s.Results show that the maximum indentation load and hardness of the system increase with the increase of velocity.The effect of indenter size on the nanoindentation response is also analysed.It is found that the maximum indentation load is higher for the large indenter whereas the hardness is higher for the smaller indenter.Dynamic nanoindentation is carried out to investigate the behaviour of Ni substrate to multiple loading-unloading cycles.It is observed from the results that the increase in the number of loading unloading cycles reduces the maximum load and hardness of the Ni substrate.This is attributed to the decrease in recovery force due to defects and dislocations produced after each indentation cycle.  相似文献   
102.
It is shown in this paper that interfacial effects have a profound impact on the scale-dependent yield strength and strain hardening rates (flow stress) of metallic thin films on elastic substrates. This is achieved by developing a higher-order strain gradient plasticity theory based on the principle of virtual power and the laws of thermodynamics. This theory enforces microscopic boundary conditions at interfaces which relate a microtraction stress to the interfacial energy at the interface. It is shown that the film bulk length scale controls the size effect if a rigid interface is assumed whereas the interfacial length scale dominates if a compliant interface is assumed.  相似文献   
103.
Engine failures due to high-cycle fatigue during severe dynamic vibration have cost the US Air Force an estimated $400 million dollars per year over the past two decades. Therefore, structural materials that exhibit high damping capacities are desirable for mechanical vibration suppression and acoustic noise attenuation. Few experimental studies suggested that hard ceramic coatings, which are commonly used as thermal barrier coatings (TBCs) to protect engine components from high temperatures and corrosion, can also serve as passive dampers due to their unique microstructure which consists of several layers of splats with inter- and intra-microstructural recursive faults (micro-cracks). Therefore, the focus of this study is on the development of a fundamental understanding of the unique microstructural features and mechanisms responsible for this observed energy dissipation in ceramic coatings under nonlinear vibration through the development of a micromechanical computational framework. Inter- and intra-fatigue damage and internal friction is simulated through the development of thermodynamic-based nonlinear cohesive laws that consider interfacial degradation, debonding, plastic sliding, and Coulomb/contact friction between the interfaces of microstructural faults. Representative volume element-based micromechanical simulations are conducted in order to assess the main micromechanical mechanisms responsible for the experimentally observed nonlinear (amplitude- and frequency-dependent) damping in plasma sprayed hard ceramic coatings. It is concluded that the major part of energy dissipation is achieved through contact friction which results from sliding of the splat interfaces along the microstructural recursive faults. Energy dissipation due to progressive decohesion and evolution of new micro-cracks is not that significant as compared to energy dissipated due to increased friction from existing and new created faults. Therefore, internal friction is the main mechanism that makes TBCs effective dampers.  相似文献   
104.
The catalytic activity of Ni/MgO catalysts was studied for the oxidative coupling of methane (OCM). The catalysts were characterized using transmission electron microscope (TEM) and XRD. The increase in C2+ selectivity of Ni/MgO was attributed to the presence of bulk dislocations and MgNiO2 phase. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
105.
In the current study, the anti-inflammatory and analgesic potential of Alnus nitida (leaves and fruits) was evaluated in the Sprague-Dawley rat. Traditionally, A. nitida was used for the treatment of inflammatory ailments. However, A. nitida leaves and fruits have not been yet reported regarding any potential medicinal effects. Leaves/fruits of A. nitida were extracted with methanol and fractionated to attain n-hexane, chloroform, ethyl acetate and aqueous fractions. These extracts were then evaluated for in vivo analgesic and anti-inflammatory potential. For in vivo anti-inflammatory activity, carrageenan-induced paw edema assay, Freunds’ complete adjuvant-induced edema, xylene-induced ear edema and histamine-induced paw edema models were used in rats, which showed significant (p < 0.01) reduction (70–80%) in edema in comparison of inflammatory controls. On other hand, for the analgesic assessment, hot plate assay and acetic acid-induced writhing tests were used, which showed a significant (p < 0.01) rise in latency time (40–60%) as compared with pain-induced controls. These results were comparable with standard drugs in a concentration-dependent manner and no mortality or toxicity was observed during all experiments. Then, for the identification of chemical constituents gas chromatography–mass spectrometry (GC-MS) analysis was performed, which indicated the presence of neophytadiene, 3,7,11,15-Tetramethyl-2-hexadecen-1-ol, phytol and vitamin E, justifying the use of A. nitida to treat inflammatory disorders.  相似文献   
106.
We investigated how different doses of microwave irradiation (MR) affect seed germination in Sorghum, including the level of remediation against textile and surgical wastewater (WW) by modulating biochemical and morpho-physiological mechanisms under glutamic acid (GA) application. The experiment was conducted to determine the impact of foliar-applied GA on Sorghum under wastewater conditions. Plants were treated with or without microwave irradiation (30 s, 2.45 GHz), GA (5 and 10 mM), and wastewater (0, 25, 50, and 100). Growth and photosynthetic pigments were significantly decreased in plants only treated with various concentrations of WW. GA significantly improved the plant growth characteristics both in MR-treated and -untreated plants compared with respective controls. HMs stress increased electrolyte leakage (EL), hydrogen peroxide (H2O2), and malondialdehyde (MDA) content; however, the GA chelation significantly improved the antioxidant enzymes activities such as ascorbate oxidase (APX), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) both in MR-treated and -untreated plants under WW stress compared with respective controls. The results suggested that the MR-treated plants accumulate higher levels of HMs under GA addition in comparison to the WW-only-treated and MR-untreated plants. The maximum increase in Cd accumulation was observed in the range of 14–629% in the roots, 15–2964% in the stems, and 26–4020% in the leaves; the accumulation of Cu was 18–2757% in the roots, 15–4506% in the stems, and 23–4605% in the leaves; and the accumulation of Pb was 13–4122% in the roots, 21–3588% in the stems, and 21–4990% in the leaves under 10 mM GA and MR-treated plants. These findings confirmed that MR-treated sorghum plants had a higher capacity for HMs uptake under GA and could be used as a potential candidate for wastewater treatment.  相似文献   
107.
The aim of the study was to conduct phytochemical and pharmacological investigations of Wrightia coccinea (Roxb. ex Hornem.) Sims via several in vitro, in vivo, and in silico models. A total of four compounds were identified and isolated from the methanol extract of the bark and the methanol extract of the seed pulp of W. coccinea through successive chromatographic techniques and were characterized as 3β-acetyloxy-olean-12-en-28-ol (1), wrightiadione (2), 22β-hydroxylupeol (3), and β-sitosterol (4) by spectroscopic analysis. The aqueous fraction of the bark and chloroform fraction of the fruits provided the most potent antioxidant capacity (IC50 = 7.22 and 4.5 µg/mL, respectively) in DPPH free radical scavenging assay compared with the standard ascorbic acid (IC50 = 17.45 µg/mL). The methanol bark extract and the methanol fruit coat extract exerted anti-diarrheal activity by inhibiting 74.55 ± 0.67% and 77.78 ± 1.5% (mean ± SEM) of the diarrheal episode in mice, respectively, after four hours of loading the samples. In the hypoglycemic test, the methanol bark extract and the methanol fruit coat extract (400 mg/kg) produced a significant (p < 0.05) reduction in the blood glucose level in mice. Both doses of the plant extracts (200 mg/kg and 400 mg/kg) used in the study induced a significant (p < 0.05) increase in pain reaction time. The in vitro and in vivo findings were supported by the computational studies. The isolated compounds exhibited higher binding affinity compared with the standard drugs towards the active binding sites of glutathione reductase, epidermal growth factor receptor (EGFR), kappa opioid receptor, glucose transporter 3 (GLUT 3), Mu opioid receptor, and cyclooxygenase 2 (COX-2) proteins due to their potent antioxidant, cytotoxic, anti-diarrheal, hypoglycemic, and central and peripheral analgesic properties, respectively. The current findings concluded that W. coccinea might be a potential natural source for managing oxidative stress, diarrhea, hyperglycemia, and pain. Further studies are warranted for extensively phytochemical screening and establishing exact mechanisms of action.  相似文献   
108.
Journal of Radioanalytical and Nuclear Chemistry - Geochemical characterization of Shahbazpur structure (Bengal Foredeep) in terms of elemental abundances obtained from INAA are presented by...  相似文献   
109.
Laser spectroscopy measurements have been performed on neutron-deficient and stable Ir isotopes using the COMPLIS experimental setup installed at ISOLDE-CERN. The radioactive Ir atoms were obtained from successive decays of a mass-separated Hg beam deposited onto a carbon substrate after deceleration to 1kV and subsequently laser desorbed. A three-color, two-step resonant scheme was used to selectively ionize the desorbed Ir atoms. The hyperfine structure (HFS) and isotope shift (IS) of the first transition of the ionization path 5d 76s 24 F 9/2 → 5d 76s6p 6 F 11/2 at 351.5nm were measured for 182-189Ir, 186Ir m and the stable 191, 193Ir. The nuclear magnetic moments μI and the spectroscopic quadrupole moments Qs were obtained from the HFS spectra and the change of the mean square charge radii from the IS measurements. The sign of μI was experimentally determined for the first time for the masses 182≤A≤189 and the isomeric state 186Ir m . The spectroscopic quadrupole moments of 182Ir and 183Ir were measured also for the first time. A large mean square charge radius change between 187Ir and 186Ir g and between 186Ir m and 186Ir g was observed corresponding to a sudden increase in deformation: from β2 ≃ + 0.16 for the heavier group A = 193, 191, 189, 187 and 186m to β2≥ + 0.2 for the lighter group A = 186g, 185, 184, 183 and 182. These results were analyzed in the framework of a microscopic treatment of an axial rotor plus one or two quasiparticle(s). This sudden deformation change is associated with a change in the proton state that describes the odd-nuclei ground state or that participates in the coupling with the neutron in the odd-odd nuclei. This state is identified with the π3/2+[402] orbital for the heavier group and with the π1/2-[541] orbital stemming from the 1h 9/2 spherical subshell for the lighter group. That last state seems to affect strongly the observed values of the nuclear moments.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号