首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   5篇
化学   157篇
晶体学   7篇
力学   6篇
数学   17篇
物理学   51篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   9篇
  2015年   2篇
  2014年   5篇
  2013年   10篇
  2012年   11篇
  2011年   8篇
  2010年   8篇
  2009年   4篇
  2008年   9篇
  2007年   17篇
  2006年   4篇
  2005年   18篇
  2004年   11篇
  2003年   12篇
  2002年   11篇
  2001年   5篇
  2000年   7篇
  1999年   5篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   5篇
  1984年   5篇
  1983年   1篇
  1982年   5篇
  1981年   3篇
  1980年   4篇
  1978年   3篇
  1977年   3篇
  1976年   1篇
  1975年   4篇
  1974年   5篇
  1973年   4篇
  1968年   1篇
  1961年   1篇
  1959年   2篇
  1957年   3篇
  1941年   2篇
排序方式: 共有238条查询结果,搜索用时 46 毫秒
51.
Collisional growth and ionization is commonplace for gas phase nanoparticles (i.e., in aerosols). Nanoparticle collisions in atmospheric pressure environments occur in the mass transfer transition regime, and further attractive singular contact potentials (which arise when modeling nanoparticles as condensed matter and for which the potential energy approaches -∞ when two entities contact) often have a non-negligible influence on collision processes. For these reasons collision rate calculations for nanoparticles in the gas phase are not straightforward. We use mean first passage time calculations to develop a simple relationship to determine the collision rate in the gas phase, accounting for the influences of both the transition regime and singular contact potentials (specifically the non-retarded van der Waals and image potentials). In the presented analysis, methods to determine the degree of enhancement in collision rate due to attractive singular potentials in the continuum (diffusive) regime, η(C), and the degree of enhancement in the free molecular (ballistic) regime, η(FM), are first reviewed. Accounting for these enhancement factors, with mean first passage time calculations it is found that the collision rate for gas phase nanoparticles with other gas phase entities can be determined from a relationship between the dimensionless collision rate coefficient, H, and the diffusive Knudsen number, Kn(D), i.e., the ratio of the mean collision persistence distance to the collision length scale. This coincides with the H(Kn(D)) relationship found to appropriately describe collisions between entities interacting via a hard-sphere potential, but with η(C) and η(FM) incorporated into the definitions of both H and Kn(D), respectively. The H(Kn(D)) relationship is compared to the predictions of flux matching theory, used prevalently in prior work for collision rate calculation, and through this comparison it is found that at high potential energy to thermal energy ratios, flux matching theory predictions underestimate the true collision rate. Finally, a series of experimental measurements of nanoparticle-nanoparticle collision rates are compared to the determined H(Kn(D)) expression, considering that nanoparticles interact via non-retarded van der Waals potentials. Very good agreement is found with collision rates inferred from experiments, with almost all measured values from four separate studies within 25% of model predictions.  相似文献   
52.
The packing of tetrahedra in face contact is well-known to be relevant to atomic clustering in many complex alloys. We briefly review some of the structures that can arise in this way, and introduce methods of dealing with the geometry of the polytope {3, 3, 5}, which is highly relevant to an understanding of these structures. Finally, we present a method of projection from S3 to E3 that enables coordinates for the key vertices of the collagen model of Sadoc and Rivier to be calculated. Received 27 March 2001  相似文献   
53.
54.
We present an alternative method to specify the stability of real stable resonators. We introduce the degree of optical stability or the S parameter, which specify the stability of resonators in a numerical scale ranging from 0 to 100%. The value of zero corresponds to marginally stable resonator and S < 0 corresponds to unstable resonator. Also, three definitions of the S parameter are provided: in terms of A&D, B&Z Ro and g 1 g 2. It may be noticed from the present formalism that the maximum degree of stability with S = 1 automatically corresponds to g 1 g 2 = 1/2. We also describe the method to measure the S parameter from the output beam characteristics and B parameter. A possible correlation between the S parameter and the misalignment tolerance is also discussed.   相似文献   
55.
A complex between cyanuric acid (CA), 4,4′-bipyridyl (BP) and Ag(I), with the composition, [Ag2(C3H2N3O3-κN)2 (C10H8N2-κN)] has been prepared. Crystal structure analysis shows that it has a chain structure in which the CA molecules are linked to the BP units through silver atoms by the formation of N-Ag-N bonds, wherein one of the hydrogens of CA is replaced by Ag(I), showing thereby the chains connected to one another by N-H...O hydrogen bonds formed between the CA molecules. This intermolecular chain structure resembles the chain structure of the CA.BP adduct where CA-BP-CA chains formed by N-H...N hydrogen bonds are linked to one another by N-H...O hydrogen bonds between the CA molecules.  相似文献   
56.
57.
58.
We report the magnetic and transport properties of the off-stoichiometric metallic perovskite like compounds GdPd3Bx (x=0.25, 0.50 and 0.75). Our results show that doping with boron in the lattice of parent binary-compound GdPd3 leads to lattice expansion. Which in turn manifests in contrasting magnetic and transport behaviors of the doped compounds in comparison with the undoped GdPd3. An attempt has been made to compare and correlate the results of magnetic and transport measurements of GdPd3Bx with that of stoichiometric compositions GdPd3BxC1−x. The comparative study of GdPd3Bx and GdPd3BxC1−x confirms that there is a strong correlations between the structural, magnetic and transport properties of these compounds.  相似文献   
59.
A high-performance flow-focusing geometry for spontaneous generation of monodispersed droplets is demonstrated. In this geometry, a two-phase flow is forced through a circular orifice integrated inside a silicon-based microchannel. The orifice with its cusp-like edge exerts a ring of maximized stress around the flow and ensures controlled breakup of droplets for a wide range of flow rates, forming highly periodic and reproducible dispersions. The droplet generation can be remarkably rapid, exceeding 10(4) s(-1) for water-in-oil droplets and reaching 10(3) s(-1) for oil-in-water droplets, being largely controlled by flow rate of the continuous phase. The droplet diameter and generation frequency are compared against a quasi-equilibrium model based on the critical Capillary number. The droplets are obtained despite the low Capillary number, below the critical value identified by the ratio of viscosities between the two phases and simple shear-flow.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号