首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   496篇
  免费   48篇
  国内免费   2篇
化学   337篇
晶体学   2篇
力学   18篇
数学   30篇
物理学   159篇
  2024年   6篇
  2023年   8篇
  2022年   18篇
  2021年   28篇
  2020年   22篇
  2019年   19篇
  2018年   26篇
  2017年   20篇
  2016年   22篇
  2015年   25篇
  2014年   26篇
  2013年   39篇
  2012年   46篇
  2011年   45篇
  2010年   21篇
  2009年   19篇
  2008年   23篇
  2007年   11篇
  2006年   15篇
  2005年   9篇
  2004年   10篇
  2003年   9篇
  2002年   5篇
  2001年   5篇
  2000年   6篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1991年   2篇
  1990年   2篇
  1986年   2篇
  1985年   7篇
  1984年   6篇
  1983年   1篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1971年   1篇
  1969年   2篇
  1968年   1篇
  1938年   1篇
排序方式: 共有546条查询结果,搜索用时 15 毫秒
101.
A new HfIV‐based metal‐organic framework with UiO‐66 topology was synthesized via a one‐step solvothermal method by using 3‐methyl‐4‐phenylthieno[2,3‐b]thiophene‐2,5‐dicarboxylic acid (H2MPTDC) as a ligand. The MOF material showed a high stability in a broad pH range (from pH 2 to pH 12) in an aqueous medium. The presence of hydrophobic methyl and phenyl substituents in the carboxylic acid ligand and strong Hf?O bond play crucial roles in its stability. The new MOF material was systematically characterized by various techniques such as XRPD, N2 sorption, thermogravimetric analyses and FT‐IR spectroscopy. The photophysical properties of the MOF material were also examined by steady‐state and time‐resolved fluorescence studies. It was observed that the blue fluorescence of the MOF material was selectively quenched in the presence of Fe3+ ion in pure aqueous medium. A mechanistic study disclosed that quenching occurs via a strong inner filter effect (IFE) arising from Fe3+ ion in aqueous medium. Interestingly, the fluorescence of the MOF material can be recovered by elimination of the IFE of Fe3+ ion via reduction of Fe3+ ion by ascorbic acid (AA). Based on the fluorescence recovery by AA, a MOF based on‐off‐on probe was developed for the sensing of Fe3+ ion and AA in aqueous medium. Inspired by this reversible sensing event, we demonstrate basic (NOT, OR, YES, INHIBIT and IMP) and higher integrated logic operations utilizing this fluorescent MOF. This MOF‐based logic systems could be potentially used for next‐generation logic‐gate based analytical applications as well as for the detection and discrimination of targeted molecules in various complex domains.  相似文献   
102.
In this framework, the novel analytical approach is presented to predict the dual solutions of Jeffery–Hamel (JH) transport model utilizing KKL (Koo–Kleinstreuer–Li) Al2O3 model with magnetic field, Ohmic heating and viscous dissipation. The predictor homotopy analysis method (PHAM) is applied to realize the existence of multiple solutions (bifurcation) for stretching/shrinking parameter and channel angle. It is observed that the dual solutions exist only for convergent channel. The eigenvalue problem is constructed to perform stability analysis which shows the physically stability of the upper branch. A numerical validation with Runge–Kutta–Fehlberg (RKF) shooting method using MATLAB is also carried out for verification. The Reynolds number is responsible to increase the velocity of fluid for both branches of the solution. For the increasing values of Ec and M, the Nusselt number decreases and increases respectively.  相似文献   
103.
Peripancreatic fluid collections are among the common post pancreas transplant complications, which are mainly due to leakage from the anastomosis site to bowel and graft pancreatitis. Differentiation between these two entities is important because they are treated differently.In this case, secretin stimulated magnetic resonance cholangiopancreatography revealed gradual intraperitoneal fluid collection and accumulation of fluid in small bowel excluded leakage from the anastomosis of the pancreas to bowel and changed the management from surgery to medical treatment.  相似文献   
104.
Different parts of a plant (seeds, fruits, flower, leaves, stem, and roots) contain numerous biologically active compounds called “phytoconstituents” that consist of phenolics, minerals, amino acids, and vitamins. The conventional techniques applied to extract these phytoconstituents have several drawbacks including poor performance, low yields, more solvent use, long processing time, and thermally degrading by-products. In contrast, modern and advanced extraction nonthermal technologies such as pulsed electric field (PEF) assist in easier and efficient identification, characterization, and analysis of bioactive ingredients. Other advantages of PEF include cost-efficacy, less time, and solvent consumption with improved yields. This review covers the applications of PEF to obtain bioactive components, essential oils, proteins, pectin, and other important materials from various parts of the plant. Numerous studies compiled in the current evaluation concluded PEF as the best solution to extract phytoconstituents used in the food and pharmaceutical industries. PEF-assisted extraction leads to a higher yield, utilizes less solvents and energy, and it saves a lot of time compared to traditional extraction methods. PEF extraction design should be safe and efficient enough to prevent the degradation of phytoconstituents and oils.  相似文献   
105.
Radon was measured in soil-gas and groundwater in the Budhakedar area of Tehri Garhwal, India in summer and winter to obtain the seasonal variation and its correlation with radon exhalation rate. The environmental surface gamma dose rate was also measured in the same area. The radon exhalation rate in the soil sample collected from different geological unit of Budhakedar area was measured using plastic track detector (LR-115 type II) technique. The variation in the radon concentration in soil-gas was found to vary from 1098 to 31,776 Bq.m−3 with an average of 7456 Bq.m−3 in summer season and 3501 to 42883 Bq.m−3 with an average of 17148 Bq.m−3 in winter season. In groundwater, it was found to vary from 8 to 3047 Bq.l−1 with an average value 510 Bq.l−1 in summer and 26 to 2311 Bq.l−1 with an average value 433 Bq.L−1 in winter. Surface gamma dose rate in the study area varied from 32.4 to 83.6 μR.h−1 with an overall mean of 58.7 μ-R.h−1 in summer and 34.6 to 79.3 μR.h−1 with an average value 58.2 μR.h−1 in winter. Radon exhalation rate from collected soil samples was found to vary from 0.1 × 10−5 to 5.7 × 10−5 Bq.kg−1.h−1 with an average of 1.5 × 10−5 Bq.kg−1.h−1 in summer season and 1.7 × 10−5 to 9.6 × 10−5 Bq.kg−1.h−1 with an average of 5.5 × 10−5 Bq.kg−1.h−1. A weak negative correlation was observed between radon exhalation rate from soil and radon concentration in the soil. Radon exhalation rate from the soil was also not found to be correlated with the gamma dose rate, while it shows a positive correlation with radon concentration in water in summer season. Inter-correlations among various parameters are discussed in detail.   相似文献   
106.
High-energy ion beam irradiation of the polymers is a good technique to modify the properties such as electrical conductivity, structural behaviour and mechanial properties. Polyaniline thin films doped with hydrochloric acid (HCl) were prepared by oxidation of ammonium persulphate. The effect of Swift Heavy Ions irradiation on the electrical and structural properties of polyaniline has been measured in this study. Polyaniline films were irradiated by oxygen ions (energy 80 MeV, charge state O+7) with fluence varying from 1 × 1010 to 3 × 1012 ions/cm2. The studies on electrical and structural properties of the irradiated polymers were investigated by measuring V-I using four probe set-up and X-ray diffraction (XRD) using Bruker AXS, X-ray powder diffractometer. V-I measurements shows an increase in the conductivity of the film, XRD pattern of the polymer shows that the crystallinity improved after the irradiation with Swift Heavy Ions (SHI), which could be attributed to cross linking mechanism.   相似文献   
107.
Two coordination polymers of the formula [Zn5(tmaH)4(trz)2(H2O)4] (1) and [Zn3(bta)(trz)2(H2O)4]·2H2O (2) [tmaH3 = benzene-1,3,5-tricarboxylic acid/trimesic acid, trzH = 1,2,4-triazole, btaH4 = benzene-1,2,4,5-tetracarboxylic acid] have been synthesized and structurally characterized by X-ray single crystal diffraction analysis. Both complexes are 3D coordination polymers containing [Zn4(trz)2] units connected by benzene-carboxylate anions. In particular, an undulated layer containing 6- and 18-membered rings is outlined in the network of 1. Hydrogen bonds, involving the coordinated and lattice water molecules with carboxylate oxygen atoms, contribute to the stabilization of the networks. Their thermal stability was investigated by thermogravimetric analysis. The fluorescence spectrum of 1 features two peaks at 419 and 323 nm, originating from a π–π∗ intraligand transition and LMCT, respectively. For 2 a broad band at 410 nm is assigned solely as a π–π∗ intraligand transition.  相似文献   
108.
Phosphorylation is the most widely studied posttranslational modification (PTM) and is an important regulatory mechanism used during cellular responses to external stimuli. The kinases and phosphatases that regulate protein phosphorylation are known to be affected in many human diseases. Cigarette smoking causes cardiovascular disease (CVD). Endothelial cells play a pivotal role in CVD initiation and development; however, there have been limited investigations of the specific signaling cascades and protein phosphorylations activated by cigarette smoke in endothelial cells. The purpose of this research was to better understand the differential protein phosphorylation in endothelial cells stimulated with extracts of cigarette smoke total particulate matter (CS-TPM) in vitro. Human microvascular endothelial cells were exposed in vitro to CS-TPM at concentrations that were shown to cause endothelial cell dysfunction. The phosphorylated proteins were isolated using phosphoprotein-specific chromatography, followed by enzymatic digestion and nano-flow capillary liquid chromatography (ncap-LC) coupled to high resolution mass spectrometry. This study putatively identified 94 proteins in human microvascular endothelial cells that were differentially bound to a phosphoprotein-specific chromatography column following exposure to CS-TPM suggesting differential phosphorylation. Pathway analysis has also been conducted and confirmations of several observations have been made using immunoaffinity-based techniques (e.g., Western blotting). Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
109.
We investigate the possibility of inflation with models of antisymmetric tensor field having minimal and nonminimal couplings to gravity. Although the minimal model does not support inflation, the nonminimal models, through the introduction of a nonminimal coupling to gravity, can give rise to stable de-Sitter solutions with a bound on the coupling parameters. The values of field and coupling parameters are sub-planckian. Slow roll analysis is performed and slow-roll parameters are defined which can give the required number of e-folds for sufficient inflation. Stability analysis has been performed for perturbations to antisymmetric field while keeping the metric unperturbed, and it is found that only the sub-horizon modes are free of ghost instability for de-Sitter space.  相似文献   
110.
R Mehmood  S Rana 《Pramana》2018,91(5):71
The main objective of this study is to examine the two-dimensional (2D) oblique Oldroyd-B flow on a stretching heated sheet. The flow governing problem is converted into nonlinear ordinary differential equations through proper scaling transformations. The prevailing set of equations is solved computationally with a tolerance level of \({ 10}^{-5}\). The velocity and temperature of a fluid model under consideration are portrayed to discuss the influence of all associated parameters on momentum and thermal characteristics. Heat flux at the wall has been computed numerically and analysed in a physical manner. The results obtained depict a reversed flow region for non-positive values of shear flow components once a free parameter is varied. It is noticed that heat transfer at the wall drops due to a rise in Deborah number \(\beta _{1}\) as well as Biot number \(\hbox {Bi}\).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号