首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19513篇
  免费   2753篇
  国内免费   3139篇
化学   15391篇
晶体学   343篇
力学   801篇
综合类   278篇
数学   2233篇
物理学   6359篇
  2024年   24篇
  2023年   214篇
  2022年   414篇
  2021年   527篇
  2020年   570篇
  2019年   641篇
  2018年   533篇
  2017年   487篇
  2016年   797篇
  2015年   864篇
  2014年   1031篇
  2013年   1454篇
  2012年   1638篇
  2011年   1693篇
  2010年   1260篇
  2009年   1237篇
  2008年   1510篇
  2007年   1379篇
  2006年   1229篇
  2005年   1030篇
  2004年   974篇
  2003年   858篇
  2002年   962篇
  2001年   768篇
  2000年   596篇
  1999年   465篇
  1998年   288篇
  1997年   304篇
  1996年   242篇
  1995年   214篇
  1994年   191篇
  1993年   180篇
  1992年   164篇
  1991年   116篇
  1990年   111篇
  1989年   91篇
  1988年   51篇
  1987年   60篇
  1986年   44篇
  1985年   42篇
  1984年   29篇
  1983年   21篇
  1982年   14篇
  1981年   15篇
  1980年   11篇
  1978年   11篇
  1977年   8篇
  1976年   8篇
  1975年   6篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
951.

Polyurethane containing tertiary nitrogen atoms was synthesized from polyol, diphenylmethane diisoccyanate (MDI) and N‐methyl diethanolamine. The polymer was converted into cationomers by quarternizing with methacrylic acid (MAA) and then dispersed in water. In this reaction, methyl methacrylate (MMA) was used to decrease viscosity; at the same time, it was the monomer in the later reaction. Finally the cationic polyurethane dispersions were further polymerized with an oil‐soluble initiator, azobisisobutyronitrile (AIBN), water‐soluble initiator, K2S2O8 (KPS) and the mixture of AIBN and KPS. The different emulsion particles with shell‐core structure, “invert” shell‐core structure and “irregular” sandwich structure were obtained; the morphological structures were characterized by TEM observation, FT‐IR and particle size analysis.  相似文献   
952.

Pervaporation is promising in the separation of benzene/cyclohexane mixture for the petrochemical industry. Two kinds of pervaporation membrane materials, including PEA‐based polyurethaneurea (PUU) and polyurethaneimide (PUI), were successfully synthesized from the same soft segment of poly(ethylene adipate)diol (PEA) and different hard segments via a two‐step method. The hard segment of PUU was prepared from toluene diisocyanate (TDI) and 4,4′‐diaminodiphenyl methane (MDA), while that of PUI was from 4,4′‐methylene‐bis(phenylisocyanate) (MDI) and pyromellitic dianhydride (PMDA). The structures and properties of PUU and PUI were characterized by means of FT‐IR, DSC and TGA. During the pervaporation experiment, the PUI membranes had a flux of 12.13 kg µm m?2 h?1 and separation factor of 8.25, while the PUU membranes had a flux of 26.35 kg µm m?2 h?1 and separation factor of 6.29 for 50 wt% benzene in the benzene/cyclohexane mixture at 40°C. The effects of the structures of hard segments on pervaporation performances were discussed. The investigation of the relationship in molecular structure and PV performances will be helpful for the choice and design of membrane materials in the separation of benzene/cyclohexane mixture.  相似文献   
953.
Therapeutic efficiency and hemolytic toxicity of primaquine (PQ), the only drug available for radical cure of relapsing vivax malaria are believed to be mediated by its metabolites. However, identification of these metabolites has remained a major challenge apparently due to low quantities and their reactive nature. Drug candidates labeled with stable isotopes afford convenient tools for tracking drug‐derived metabolites in complex matrices by liquid chromatography‐tandem mass spectrometry (LC‐MS‐MS) and filtering for masses with twin peaks attributable to the label. This study was undertaken to identify metabolites of PQ from an in vitro incubation of a 1:1 w/w mixture of 13C6‐PQ/PQ with primary human hepatocytes. Acquity ultra‐performance LC (UHPLC) was integrated with QTOF‐MS to combine the efficiency of separation with high sensitivity, selectivity of detection and accurate mass determination. UHPLC retention time, twin mass peaks with difference of 6 (originating from 13C6‐PQ/PQ), and MS‐MS fragmentation pattern were used for phenotyping. Besides carboxy‐PQ (cPQ), formed by oxidative deamination of PQ to an aldehyde and subsequent oxidation, several other metabolites were identified: including PQ alcohol, predictably generated by oxidative deamination of PQ to an aldehyde and subsequent reduction, its acetate and the alcohol's glucuronide conjugate. Trace amounts of quinone‐imine metabolites of PQ and cPQ were also detected which may be generated by hydroxylation of the PQ/cPQ quinoline ring at the 5‐position and subsequent oxidation. These findings shed additional light on the human hepatic metabolism of PQ, and the method can be applied for identification of reactive PQ metabolites generated in vivo in preclinical and clinical studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
954.
Highlights? Growth arrest induced by human telomerase in yeast is chemically reversible ? Readout is sensitive to telomerase catalytic activity and telomere recruitment ? Three cell-permeable compounds also inhibit purified human telomerase ? Yeast can be successfully used to screen for human telomerase inhibitors  相似文献   
955.
956.
957.
Cellular prion protein, a membrane protein, is expressed in all mammals. Prion protein is also found in human blood as an anchorless protein, and this protein form is one of the many potential sources of misfolded prion protein replication during transmission. Many studies have suggested that β-amyloid1–42 oligomer causes neurotoxicity associated with Alzheimer''s disease, which is mediated by the prion protein that acts as a receptor and regulates the hippocampal potentiation. The prevention of the binding of these proteins has been proposed as a possible preventative treatment for Alzheimer''s disease; therefore, a greater understanding of the binding hot-spots between the two molecules is necessary. In this study, the epitope mapping immunoassay was employed to characterize binding epitopes within the prion protein and complementary epitopes in β-amyloid. Residues 23–39 and 93–119 in the prion protein were involved in binding to β-amyloid1–40 and 1–42, and monomers of this protein interacted with prion protein residues 93–113 and 123–166. Furthermore, β-amyloid antibodies against the C-terminus detected bound β-amyloid1–42 at residues 23–40, 104–122 and 159–175. β-Amyloid epitopes necessary for the interaction with prion protein were not determined. In conclusion, charged clusters and hydrophobic regions of the prion protein were involved in binding to β-amyloid1–40 and 1–42. The 3D structure appears to be necessary for β-amyloid to interact with prion protein. In the future, these binding sites may be utilized for 3D structure modeling, as well as for the pharmaceutical intervention of Alzheimer''s disease.  相似文献   
958.
Apoptosis has an important role in maintaining tissue homeostasis in cellular stress responses such as inflammation, endoplasmic reticulum stress, and oxidative stress. T-cell death-associated gene 51 (TDAG51) is a member of the pleckstrin homology-like domain family and was first identified as a pro-apoptotic gene in T-cell receptor-mediated cell death. However, its pro-apoptotic function remains controversial. In this study, we investigated the role of TDAG51 in oxidative stress-induced apoptotic cell death in mouse embryonic fibroblasts (MEFs). TDAG51 expression was highly increased by oxidative stress responses. In response to oxidative stress, the production of intracellular reactive oxygen species was significantly enhanced in TDAG51-deficient MEFs, resulting in the activation of caspase-3. Thus, TDAG51 deficiency promotes apoptotic cell death in MEFs, and these results indicate that TDAG51 has a protective role in oxidative stress-induced cell death in MEFs.  相似文献   
959.
A four-directional benzene-centered aliphatic polyamine, MXBDP, with high functionality and low volatility, is used to cure epoxy resin (DGEBA). Herein we originally report the isothermal cure kinetics and dynamic mechanical properties of DGEBA/MXBDP. Differential scanning calorimetry confirms that MXDBP is more reactive than commercial linear metaxylenediamine and branched Jeffamine T-403 and the isothermal curing reaction is autocatalytic. The Kamal model is found to be able to well describe the curing rate up to the onset of diffusion control, and the excellent match over the whole conversion range is achieved using the extended Kamal model. Interestingly, the isoconversional kinetic analysis indicates that the effective reaction activation energy (E α ) changes substantially with conversion, and ultimately decreases to a very small value (<10 kJ mol?1) because of the diffusion-controlled reaction kinetics. Then, dynamic mechanical analysis reveals that DGEBA/MXBDP exhibits the higher α- and β-relaxation temperatures and the much higher crosslink density than DGEBA/metaxylenediamine. Our experiment results support that MXBDP has the high reactivity and improved thermal resistance in combination with the advantages of the high functionality, low volatility and decreased CO2 absorption. Therefore, MXBDP may be especially suitable for room temperature-cure epoxy coatings and adhesives.  相似文献   
960.
A highly sensitive label-free electrochemical aptasensor has been constructed for the electrochemical detection of thrombin (TB), where two layers of cobalt hexacyanoferrate (CoHCF) redox probes sandwiched with carbon nanotubes–Nafion were directly immobilized on the electrode surface by electrodeposition. Through the strong interaction between CN? (CoHCF) and gold nanoparticles (GNPs), GNPs were assembled on the CoHCF-modified electrode for the immobilization of thiolated thrombin aptamers (TBA). In the presence of target TB, TBA on the electrode surface could catch TB to form TBA–TB complex, which made a barrier for the electron transfer, resulting in a greater decrease in CoHCF redox probe signals. Thus, the proposed aptasensor showed a high sensitivity and a much wider linearity to TB in the range of 1.0 pg/mL?~?1.0 μg/mL with a detection limit of 0.28 pg/mL.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号