首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   11篇
  国内免费   1篇
化学   129篇
数学   10篇
物理学   19篇
  2023年   1篇
  2022年   4篇
  2021年   10篇
  2020年   4篇
  2019年   6篇
  2018年   3篇
  2017年   2篇
  2016年   8篇
  2015年   9篇
  2014年   6篇
  2013年   13篇
  2012年   9篇
  2011年   18篇
  2010年   5篇
  2009年   8篇
  2008年   5篇
  2007年   11篇
  2006年   6篇
  2005年   8篇
  2004年   10篇
  2003年   7篇
  2001年   1篇
  1999年   2篇
  1996年   1篇
  1994年   1篇
排序方式: 共有158条查询结果,搜索用时 31 毫秒
81.

Abstract  

The synthesis of [1-15N,2-13C]-difloxacin, an arylfluoroquinolone antibacterial agent, is reported. As a crucial initial step, the starting materials ethyl 2,4,5-trifluorobenzoylacetate, [formyl-13C]-triethyl orthoformate, and [15N]-4-fluoroaniline were reacted to ethyl [15N,3-13C]-3-(4-fluoroanilino)-2-(2,4,5-trifluorobenzoyl)acrylate. After cyclization and ester cleavage, the resulting intermediate was reacted with 1-methylpiperazine to [1-15N,2-13C]-1-(4-fluorophenyl)-6-fluoro-7-(4-methyl-1-piperazinyl)-1,4-dihydro-4-oxoquinoline-3-carboxylate, i.e., [1-15N,2-13C]-difloxacin. The overall yield was 62% based on the non-labeled and 43% based on the labeled starting materials (both used in 1.4 molar excess). The product was identified by 1H-, 13C-, and 15N-NMR spectroscopy and by cochromatography (TLC, HPLC) with an authentic reference; its purity (HPLC) was above 98%. Prior to synthesis of [1-15N,2-13C]-difloxacin, non-labeled difloxacin was synthesized in order to optimize procedures and to identify and characterize all intermediates.  相似文献   
82.
Syntheses and Structures of Cobalt(II) and Copper(I) Complexes with Guanidine‐Pyridine Hybridligands The guanidine‐pyridine hybridligands N‐(1,3‐dimethylimidazolidin‐2‐ylidene)‐2‐(pyridine‐2‐yl)ethanamine (DMEGepy, L1 ) and 1,1,3,3‐tetramethyl‐2‐(2‐(pyridine‐2‐yl)ethyl)guanidine (TMGepy, L2 ) have been synthesized and characterized. The reaction of DMEGepy with CoCl2 and TMGepy with CuI lead to the mononuclear complexes {N‐(1,3‐dimethylimidazolidin‐2‐ylidene)‐2‐(pyridine‐2‐yl)ethanamine}cobalt(II) dichloride ( 1 ) and {1,1,3,3‐tetramethyl‐2‐(2‐(pyridine‐2‐yl)ethyl)guanidine}copper(I) iodide ( 2 ). By the characterization of these complexes we are able to compare the complexation chemistry of the hybridguanidine and bisguanidine ligands with regard to the various N donor functions systematically.  相似文献   
83.
ABT-869 is a novel ATP-competitive inhibitor for all the vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) receptor tyrosine kinases (RTKs). It is one of the oncology drugs in development at Abbott Laboratories and has great potential for enhanced anti-tumor efficacy as well as activity in a broad range of human cancers. We report here an accurate, precise and rugged liquid chromatography/mass spectrometry (LC/MS/MS) assay for the quantitative measurement of ABT-869 and its acid metabolite A-849529. A fully automated 96-well liquid/liquid extraction method was achieved utilizing a Hamilton liquid handler. The only manual intervention required prior to LC/MS/MS injection is to transfer the 96-well plate to a drying rack to dry the extracts then transfer the plate back to the Hamilton for robotic reconstitution. The linear dynamic ranges were from 1.1 to 598.8 ng/mL for ABT-869 and from 1.1 to 605.8 ng/mL for A-849529. The coefficient of determination (r2) for all analytes was greater than 0.9995. For the drug ABT-869, the intra-assay coefficient of variance (CV) was between 0.4% and 3.7% and the inter-assay CV was between 0.9% and 2.8%. The inter-assay mean accuracy, expressed as percent of theoretical, was between 96.8% and 102.2%. For the metabolite A-849529, the intra-assay CV was between 0.5% and 5.1% and the inter-assay CV was between 0.8% and 4.9%. The inter-assay mean accuracy, expressed as percent of theoretical, was between 96.9% and 100.6%.  相似文献   
84.
The reactivity of the sulfur‐containing nucleoside 4‐thio‐(2′‐deoxy)‐thymidine usually abbreviated as 4‐thio‐thymidine, (S4‐TdR) under Fenton conditions, ie, in the presence of H2O2 and catalytic amounts of Fe(II), was investigated by UV‐vis spectroscopy and electrospray ionization single and tandem mass spectrometry (ESI‐MS and MS/MS). S4‐TdR hydroxylated on the S atom was found to be a key reaction intermediate, ultimately leading to (2′‐deoxy)‐thymidine usually abbreviated as thymidine, (TdR) as the main reaction product. This finding was in accordance with the outcome of the reaction between S4‐TdR and H2O2, previously investigated in our laboratory. On the other hand, the additional presence of ?OH radicals, induced by the Fe(II)/H2O2 combination, led to the increased generation of another interesting S4‐TdR product, already observed after its reaction with H2O2 alone, ie, the covalent dimer including a S? S bridge between two S4‐TdR molecules. More importantly, multihydroxylated derivatives of S4‐TdR and TdR were detected as peculiar products obtained under Fenton conditions. Among them, a product bearing an OH group both on the methyl group linked to the thymine ring and on the C5 atom of the ring was found to prevail. The results obtained during this study, integrated by those found previously in our laboratory, indicate 4‐thiothymidine as a promising molecular probe for the recognition, through a careful characterization of its reaction products, of the prevailing species among reactive oxygen species (ROS) corresponding to singlet‐state oxygen, hydrogen peroxide, and hydroxylic radical.  相似文献   
85.
Many biomedical analysis applications require trapping and manipulating single cells and cell clusters within microfluidic devices. Dielectrophoresis (DEP) is a label-free technique that can achieve flexible cell trapping, without physical barriers, using electric field gradients created in the device by an electrode microarray. Little is known about how fluid flow forces created by the electrodes, such as thermally driven convection and electroosmosis, affect DEP-based cell capture under high conductance media conditions that simulate physiologically relevant fluids such as blood or plasma. Here, we compare theoretical trajectories of particles under the influence of negative DEP (nDEP) with observed trajectories of real particles in a high conductance buffer. We used 10-µm diameter polystyrene beads as model cells and tracked their trajectories in the DEP microfluidic chip. The theoretical nDEP trajectories were in close agreement with the observed particle behavior. This agreement indicates that the movement of the particles was highly dominated by the DEP force and that contributions from thermal- and electroosmotic-driven flows were negligible under these experimental conditions. The analysis protocol developed here offers a strategy that can be applied to future studies with different applied voltages, frequencies, conductivities, and polarization properties of the targeted particles and surrounding medium. These findings motivate further DEP device development to manipulate particle trajectories for trapping applications.  相似文献   
86.
Syringa vulgaris L. (common lilac) is one of the most popular ornamental species, but also a promising not comprehensively studied source of bioactive compounds with important therapeutic potential. Our study was designed to characterize the chemical composition and to assess the antioxidant and cytotoxic properties of ethanolic extracts obtained from S. vulgaris L. flowers, leaves, bark, and fruit. The chemical profile of the ethanolic extracts was investigated using chromatographic (HPLC-DAD-ESI+, GC-MS) and spectral (UV-Vis, FT-IR) methods, while the protective effect against free radicals was evaluated in vitro by different chemical assays (DPPH, FRAP, CUPRAC). The cytotoxic activity was tested on two tumoral cell lines, HeLa, B16F10, using the MTT assay. Significant amounts of free or glycosylated chemical components belonging to various therapeutically important structural classes, such as phenyl-propanoids (syringin, acteoside, echinacoside), flavonoids (quercetin, kaempferol derivatives) and secoiridoids (secologanoside, oleuropein, 10-hydroxy oleuropein, demethyloleuropein, syringalactone A, nuzhenide, lingstroside) were obtained for the flowers, leaves and bark extracts, respectively. Furthermore, MTT tests pointed out a significant cytotoxic potential expressed in a non-dose-dependent manner toward the tumoral lines. The performed methods underlined that S. vulgaris extracts, in particular belonging to flowers and leaves, represent valuable sources of compounds with antioxidant and antitumoral potential.  相似文献   
87.
Visual arrestin terminates the signal amplification cascade in photoreceptor cells by blocking the interaction of light activated phosphorylated rhodopsin with the G-protein transducin. Although crystal structures of arrestin and rhodopsin are available, it is still unknown how the complex of the two proteins is formed. To investigate the interaction sites of arrestin with rhodopsin various surface regions of recombinant arrestin were sterically blocked by different numbers of fluorophores (Alexa 633). The binding was recorded by time-resolved light scattering. To accomplish site-specific shielding of protein regions, in a first step all three wild-type cysteines were replaced by alanines. Nevertheless, regarding the magnitude and specificity of rhodopsin binding, the protein is still fully active. In a second step, new cysteines were introduced at selected sites to allow covalent binding of fluorophores. Upon attachment of Alexa 633 to the recombinant cysteines we observed that these bulky labels residing in the concave area of either the N- or the C-terminal domain do not perturb the activity of arrestin. By simultaneously modifying both domains with one Alexa 633 the binding capacity was reduced. The presence of two Alexa 633 molecules in each domain prevented binding of rhodopsin to arrestin. This observation indicates that both concave sites participate in binding.  相似文献   
88.
Sirolimus, an effective immunosuppressive agent, is used for drug eluting stents. During stent development, an analytical method for the determination of sirolimus in tissue needs to be established. Normally, tissue samples are homogenized and then analyzed against the calibration standards prepared in a tissue homogenate. This approach provides insufficient control of the homogenization process. In this paper, tissue quality control samples were introduced for the optimization of the homogenization process during method development, but also allowance for the performance evaluation of the entire analytical process. In addition, a new approach using rabbit blood as a homogenization medium was developed to stabilize sirolimus in rabbit tissue homogenates. Calibration standards and quality controls were prepared by spiking different sirolimus working solutions into rabbit blood. Homogenization quality control samples were prepared by injecting other sirolimus working solutions into empty test tubes and pre-cut arteries within pre-defined masses. A high-throughput homogenization procedure was optimized based on the specific chemical properties of sirolimus. The linear dynamic range was between 49.9 pg/mL and 31.9 ng/mL to accommodate the expected artery homogenate concentrations. Additionally, quality controls in rabbit blood were also used in the extraction to support the calibration standards. The accuracy and precision of the quality controls in rabbit blood reflect the extraction performance and the accuracy and precision of the homogenization tissue quality controls reflect the overall performance of the method. The mean bias was between -4.5 and 0.2% for all levels of quality controls in the blood and between 4.8 and 14.9% for all levels of the homogenization tissue quality controls. The CVs of all concentration levels were < or =5.3% for the quality controls in blood and < or =9.2% for the homogenization tissue quality controls. The method was successfully applied to determine the concentration of sirolimus in the rabbit arteries.  相似文献   
89.
Academic and industrial research continues to be focused on discovering new classes of compounds based on HTS. Post-HTS analyses need to prioritize compounds that are progressed to chemical probe or lead status. We report trends in probe, lead and drug discovery by examining the following categories of compounds: 385 leads and the 541 drugs that emerged from them; "active" (152) and "inactive" (1488) compounds from the Molecular Libraries Initiative Small Molecule Repository (MLSMR) tested by HTS; "active" (46) and "inactive" (72) compounds from Nature Chemical Biology (NCB) tested by HTS; compounds in the drug development phase (I, II, III and launched), as indexed in MDDR; and medicinal chemistry compounds from WOMBAT, separated into high-activity (5,784 compounds with nanomolar activity or better) and low-activity (30,690 with micromolar activity or less). We examined Molecular weight (MW), molecular complexity, flexibility, the number of hydrogen bond donors and acceptors, LogP-the octanol/water partition coefficient estimated by ClogP and ALOGPS), LogSw (intrinsic water solubility, estimated by ALOGPS) and the number of Rule of five (Ro5) criteria violations. Based on the 50% and 90% distribution moments of the above properties, there were no significant difference between leads of known drugs and "actives" from MLSMR or NCB (chemical probes). "Inactives" from NCB and MLSMR were also found to exhibit similar properties. From these combined sets, we conclude that "Actives" (569 compounds) are less complex, less flexible, and more soluble than drugs (1,651 drugs), and significantly smaller, less complex, less hydrophobic and more soluble than the 5,784 high-activity WOMBAT compounds. These trends indicate that chemical probes are similar to leads with respect to some properties, e.g., complexity, solubility, and hydrophobicity.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号