首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   600篇
  免费   10篇
  国内免费   1篇
化学   351篇
晶体学   2篇
力学   17篇
数学   100篇
物理学   141篇
  2022年   5篇
  2019年   7篇
  2018年   7篇
  2017年   7篇
  2016年   9篇
  2015年   11篇
  2014年   11篇
  2013年   33篇
  2012年   26篇
  2011年   37篇
  2010年   12篇
  2009年   14篇
  2008年   23篇
  2007年   37篇
  2006年   26篇
  2005年   23篇
  2004年   21篇
  2003年   22篇
  2002年   24篇
  2001年   10篇
  2000年   6篇
  1999年   7篇
  1998年   6篇
  1997年   12篇
  1996年   11篇
  1995年   7篇
  1994年   6篇
  1993年   9篇
  1992年   6篇
  1990年   7篇
  1989年   7篇
  1988年   6篇
  1987年   5篇
  1986年   5篇
  1985年   7篇
  1984年   8篇
  1983年   6篇
  1982年   5篇
  1981年   8篇
  1980年   5篇
  1979年   5篇
  1977年   5篇
  1975年   7篇
  1973年   4篇
  1972年   4篇
  1964年   6篇
  1961年   4篇
  1960年   5篇
  1948年   9篇
  1936年   4篇
排序方式: 共有611条查询结果,搜索用时 312 毫秒
21.
The reaction of di-tert-butyl phosphate (((t)BuO)(2)P(O)(OH), dtbp-H) with copper acetate in the presence of pyridine (py) and 2,4,6-trimethylpyridine (collidine) has been investigated. Copper acetate reacts with dtbp-H in a reaction medium containing pyridine, DMSO, THF, and CH(3)OH to yield a one-dimensional polymeric complex [Cu(dtbp)(2)(py)(2)(mu-OH(2))](n) (1) as blue hollow crystalline tubes. The copper atoms in 1 are octahedral and are surrounded by two terminal phosphate ligands, two pyridine molecules, and two bridging water molecules. The mu-OH(2) ligands that are present along the elongated Jahn-Teller axis are responsible for the formation of the one-dimensional polymeric structure. Recrystallization of 1 in a DMSO/THF/CH(3)OH mixture results in the reorganization of the polymer and its conversion to a more stable tetranuclear copper cluster [Cu(4)(mu(3)-OH)(2)(dtbp)(6)(py)(2)] (2) in about 60% yield. The molecular structure of 2 is made up of a tetranuclear core [Cu(4)(mu(3)-OH)(2)] which is surrounded by six bidentate bridging dtbp ligands. While two of the copper atoms are pentacoordinate with a tbp geometry, the other two copper atoms exhibit a pseudooctahedral geometry with five normal Cu-O bonds and an elongated Cu-O linkage. The pentacoordinate copper centers bear an axial pyridine ligand. The short Cu.Cu nonbonded distances in the tetranuclear core of 2 lead to magnetic ordering at low temperature with an antiferromagnetic coupling at approximately 20 K (J(P) = -44 cm(-1), J(c) = -66 cm(-1), g = 2.25, and rho = 0.8%). When the reaction between di-tert-butyl phosphate (dtbp-H) and copper acetate was carried out in the presence of collidine, large dark-blue crystals of monomeric copper complex [Cu(dtbp)(2)(collidine)(2)] (3) formed as the only product. A single-crystal X-ray diffraction study of 3 reveals a slightly distorted square-planar geometry around the copper atom. Thermogravimetric analysis of 1-3 revealed a facile decomposition of the coordinated ligands and dtbp to produce a copper phosphate material around 500 degrees C. An independent solid-state thermolysis of all the three complexes in bulk at 500-510 degrees C for 2 days produced copper pyrophosphate Cu(2)P(2)O(7) along with small quantities of Cu(PO(3))(2) as revealed by DR-UV spectroscopic and PXRD studies.  相似文献   
22.
This paper contains general transformation techniques useful to convert minimax problems of optimal control into the Mayer-Bolza problem of the calculus of variations [Problem (P)]. We consider two types of minimax problems: minimax problems of Type (Q), in which the minimax function depends on the state and does not depend on the control; and minimax problems of Type (R), in which the minimax function depends on both the state and the control. Both Problem (Q) and Problem (R) can be reduced to Problem (P).For Problem (Q), we exploit the analogy with a bounded-state problem in combination with a transformation of the Jacobson type. This requires the proper augmentation of the state vectorx(t), the control vectoru(t), and the parameter vector , as well as the proper augmentation of the constraining relations. As a result of the transformation, the unknown minimax value of the performance index becomes a component of the parameter vector being optimized.For Problem (R), we exploit the analogy with a bounded-control problem in combination with a transformation of the Valentine type. This requires the proper augmentation of the control vectoru(t) and the parameter vector , as well as the proper augmentation of the constraining relations. As a result of the transformation, the unknown minimax value of the performance index becomes a component of the parameter vector being optimized.In a subsequent paper (Part 2), the transformation techniques presented here are employed in conjunction with the sequential gradient-restoration algorithm for solving optimal control problems on a digital computer; both the single-subarc approach and the multiple-subarc approach are discussed.This research was supported by the National Science Foundation, Grant No. ENG-79-18667, and by Wright-Patterson Air Force Base, Contract No. F33615-80-C3000. This paper is a condensation of the investigations reported in Refs. 1–7. The authors are indebted to E. M. Coker and E. M. Sims for analytical and computational assistance.  相似文献   
23.
24.
Two-dimensional carbon nanosheets have been fabricated using inductively coupled radio frequency plasma-enhanced chemical vapour deposition. The structural properties of the nanosheets have been characterised using atomic force microscopy, scanning electron microscopy and X-ray diffractometer. The magnetisation of the samples was studied using vibrating sample magnetometer. The magnetisation of the nanosheets was found to be diamagnetic for fast synthesis processes (30 and 60 min). On the other hand, the nanosheets exhibited a weak ferromagnetic response for the slow (120 min) synthesis process. Energy dispersive spectrometry and atomic absorption spectroscopy confirmed that the magnetisation exhibited by the carbon nanosheets was an intrinsic property and that it was not due to contamination from the substrate. Raman spectroscopy studies revealed that the ferromagnetic carbon nanosheets have a higher ratio (1.20) of graphite peak (I G) to disordered peak (I D) than normally expected (0.75–0.90). Available data indicated that the magnetisation was due to the presence of structural disorders.  相似文献   
25.
26.
In biological systems, X‐ray absorption spectroscopy (XAS) can determine structural details of metal binding sites with high resolution. Here a method enabling an automated analysis of the corresponding EXAFS data is presented, utilizing in addition to least‐squares refinement the prior knowledge about structural details and important fit parameters. A metal binding motif is characterized by the type of donor atoms and their bond lengths. These fit results are compared by bond valance sum analysis and target distances with established structures of metal binding sites. Other parameters such as the Debye–Waller factor and shift of the Fermi energy provide further insights into the quality of a fit. The introduction of mathematical criteria, their combination and calibration allows an automated analysis of XAS data as demonstrated for a number of examples. This presents a starting point for future applications to all kinds of systems studied by XAS and allows the algorithm to be transferred to data analysis in other fields.  相似文献   
27.
A novel method for maskless micro-patterning of polymeric substrates is presented. First, an azobenzene functionalized polymer film is spin-coated on a Poly (ethylene terephthalate) (PET) sheet. Then surface relief structures are optically inscribed on the polymer film by interference of laser beams. The patterned azobenzene functionalized film is then etched in the plasma chamber such that the gratings are transferred to the PET substrate. Finally, any remaining azobenzene functionalized polymer is dissolved away using an appropriate solvent. This method of patterning can be broadly applied to a variety of flexible/polymeric substrates and the resolution is not limited by the substrate thermo-mechanical properties.  相似文献   
28.
Polymers synthesized from naturally derived monomers are valuable since they decrease the reliance on petroleum based feed stocks. Cashew nut shell oil (CNSL) is a side-product from processing of edible Cashew nuts of Annacardium occidentale. One of the major components of CNSL is cardanol, which is a phenol derivative having an unsaturated pentadecyl substituent in the ‘meta’ position with varying amount of unsaturation (no double bonds to three double bonds). The substituent in the meta position can also be hydrogenated to yield completely saturated hydrogenated cardanol. Cardanol can be utilized to stabilize the dispersions of oil in water and vice versa since it displays amphiphilic behavior owing to the phenolic head and the C15 aliphatic tail. Here we report the horseradish peroxidase (HRP) catalyzed polymerization of cardanol at oil water interface to obtain polycardanol microcapsules. A synthetic analogue of hydrogenated cardanol, 3-pentadecylphenol (3PDP), was also oxidatively polymerized at the oil-water interface to obtain Poly(3-pentadecylphenol) microcapsules.  相似文献   
29.
Main‐chain thermotropic liquid‐crystalline polyesters containing rigid biphenyl mesogens and flexible spacers were synthesized by chemo‐enzymatic route. The enzyme‐catalyzed polymerization showed high regio‐ and chemo‐ selectivity, and is environmentally friendly. The resulting polyesters were characterized with 1H‐NMR, 13C‐NMR, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and polarized light optical microscopy (POM).  相似文献   
30.
In this research paper, we report on the rapid synthesis of silver nanoparticles using dried areca nut (Areca catechu). The microwave exposed aqueous areca nut powder when treated with the aqueous silver salt solution yielded irregular shaped silver nanoparticles. The formation and morphology of the nanoparticles are studied using UV–visible spectroscopy, field emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy. The X-ray diffraction studies and energy dispersive X-ray analysis indicate that the particles are crystalline in nature. The understanding of capping of biological moiety is derived from Fourier transform infrared spectroscopy and the thermogravimetric analysis. The green chemistry approach for the synthesis of silver nanoparticles is modest, amenable for large scale commercial production. Further the biologically synthesized silver nanoparticles are known for their potential antibacterial activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号