首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4895篇
  免费   165篇
  国内免费   8篇
化学   3304篇
晶体学   35篇
力学   100篇
数学   545篇
物理学   1084篇
  2022年   29篇
  2021年   48篇
  2020年   71篇
  2019年   75篇
  2018年   41篇
  2017年   47篇
  2016年   140篇
  2015年   126篇
  2014年   125篇
  2013年   228篇
  2012年   206篇
  2011年   261篇
  2010年   190篇
  2009年   142篇
  2008年   238篇
  2007年   253篇
  2006年   217篇
  2005年   180篇
  2004年   173篇
  2003年   134篇
  2002年   147篇
  2001年   112篇
  2000年   101篇
  1999年   89篇
  1998年   76篇
  1997年   68篇
  1996年   73篇
  1995年   83篇
  1994年   73篇
  1993年   76篇
  1992年   82篇
  1991年   60篇
  1990年   71篇
  1989年   49篇
  1988年   50篇
  1987年   37篇
  1986年   45篇
  1985年   65篇
  1984年   52篇
  1983年   42篇
  1982年   37篇
  1981年   37篇
  1980年   56篇
  1979年   43篇
  1978年   37篇
  1977年   51篇
  1976年   27篇
  1975年   32篇
  1973年   34篇
  1967年   26篇
排序方式: 共有5068条查询结果,搜索用时 15 毫秒
81.
82.
83.
Silver nanoparticles were produced by laser ablation of a continuously flowing aerosol of microparticles in nitrogen at varying laser fluences. Transmission electron micrographs were analyzed to determine the effect of laser fluence on the nanoparticle size distribution. These distributions exhibited bimodality with a large number of particles in a mode at small sizes (3–6-nm) and a second, less populated mode at larger sizes (11–16-nm). Both modes shifted to larger sizes with increasing laser fluence, with the small size mode shifting by 35% and the larger size mode by 25% over a fluence range of 0.3–4.2-J/cm2. Size histograms for each mode were found to be well represented by log-normal distributions. The distribution of mass displayed a striking shift from the large to the small size mode with increasing laser fluence. These results are discussed in terms of a model of nanoparticle formation from two distinct laser–solid interactions. Initially, laser vaporization of material from the surface leads to condensation of nanoparticles in the ambient gas. Material evaporation occurs until the plasma breakdown threshold of the microparticles is reached, generating a shock wave that propagates through the remaining material. Rapid condensation of the vapor in the low-pressure region occurs behind the traveling shock wave. Measurement of particle size distributions versus gas pressure in the ablation region, as well as, versus microparticle feedstock size confirmed the assignment of the larger size mode to surface-vaporization and the smaller size mode to shock-formed nanoparticles.  相似文献   
84.
The use of a common set of basis functions for design and analysis is the main paradigm of isogeometric analysis. The characteristics of the commonly used non-uniform rational B-splines (NURBS) surfaces require methods to handle non-conforming meshes to attain an efficient computational framework. The isogeometric mortar method uses constrained approximation spaces to enforce a coupling of deformations at the interface between patches in a weak manner. This method neither requires additional degrees of freedom nor the choice of empirical parameters. The main drawback of the standard isogeometric mortar approach is the non-local support of the mortar basis functions along the interface. This yields a large number of nodes per element for elements adjacent to the interface. Thus, the computational costs increase significantly for mesh refinement. This issue is remedied by the use of dual basis functions for the mortar method, which is referred to as dual mortar method. In this contribution several choices for the dual basis functions for B-splines are proposed and compared. A special focus is set on the support of the dual basis functions and on the support of the resulting mortar basis functions. Numerical examples show the influence of the choice for the dual basis functions on the accuracy of the global stress distribution, on the fulfillment of the interface conditions and on numerical efficiency. The use of approximate dual basis functions is shown to be competitive to computations of conforming meshes in terms of accuracy and efficiency. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
85.
86.
We report recent achievements in adapting industrially used solar cell processes on nanotextured surfaces. Nanostructures were etched into c‐Si surfaces by dry exothermic plasma‐less reaction of F species with Si in atmospheric pressure conditions and then modified using a short post‐etching process. Nanotextured multicrystalline wafers are used to prepare Al‐BSF solar cells using industrially feasible solar cell proc‐ essing steps. In comparison to the reference acidic textured solar cells, the nanostructured cells showed gain in short circuit current (Jsc) of up to 0.8 mA/cm2 and absolute gain in conversion efficiency of up to 0.3%. The best nanotextured solar cell was independently certified to reach the conversion efficiency of 18.0%. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
87.
The most momentous requirement a quantum theory of gravity must satisfy is Background Independence, necessitating in particular an ab initio derivation of the arena all non-gravitational physics takes place in, namely spacetime. Using the background field technique, this requirement translates into the condition of an unbroken split-symmetry connecting the (quantized) metric fluctuations to the (classical) background metric. If the regularization scheme used violates split-symmetry during the quantization process it is mandatory to restore it in the end at the level of observable physics. In this paper we present a detailed investigation of split-symmetry breaking and restoration within the Effective Average Action (EAA) approach to Quantum Einstein Gravity (QEG) with a special emphasis on the Asymptotic Safety conjecture. In particular we demonstrate for the first time in a non-trivial setting that the two key requirements of Background Independence and Asymptotic Safety can be satisfied simultaneously. Carefully disentangling fluctuation and background fields, we employ a ‘bi-metric’ ansatz for the EAA and project the flow generated by its functional renormalization group equation on a truncated theory space spanned by two separate Einstein–Hilbert actions for the dynamical and the background metric, respectively. A new powerful method is used to derive the corresponding renormalization group (RG) equations for the Newton- and cosmological constant, both in the dynamical and the background sector. We classify and analyze their solutions in detail, determine their fixed point structure, and identify an attractor mechanism which turns out instrumental in the split-symmetry restoration. We show that there exists a subset of RG trajectories which are both asymptotically safe and split-symmetry restoring: In the ultraviolet they emanate from a non-Gaussian fixed point, and in the infrared they loose all symmetry violating contributions inflicted on them by the non-invariant functional RG equation. As an application, we compute the scale dependent spectral dimension which governs the fractal properties of the effective QEG spacetimes at the bi-metric level. Earlier tests of the Asymptotic Safety conjecture almost exclusively employed ‘single-metric truncations’ which are blind towards the difference between quantum and background fields. We explore in detail under which conditions they can be reliable, and we discuss how the single-metric based picture of Asymptotic Safety needs to be revised in the light of the new results. We shall conclude that the next generation of truncations for quantitatively precise predictions (of critical exponents, for instance) is bound to be of the bi-metric type.  相似文献   
88.
Summary. We derive globally convergent multigrid methods for discrete elliptic variational inequalities of the second kind as obtained from the approximation of related continuous problems by piecewise linear finite elements. The coarse grid corrections are computed from certain obstacle problems. The actual constraints are fixed by the preceding nonlinear fine grid smoothing. This new approach allows the implementation as a classical V-cycle and preserves the usual multigrid efficiency. We give estimates for the asymptotic convergence rates. The numerical results indicate a significant improvement as compared with previous multigrid approaches. Received March 26, 1994 / Revised version received September 22, 1994  相似文献   
89.
An extremely thin cell (ETC) with the thickness of a Rb atomic vapor layer in the range of 100–300 nm was fabricated. It is demonstrated that a simple laser-diode technique with a single resonant light beam is sufficient to observe separately all of the atomic hyperfine transitions of the D 2 line of Rb (780 nm) and also allows us to measure the relative transition probabilities of the hyperfine transitions. The onset of collisional self-broadening of the hyperfine transitions as the number density of atoms increases was studied. The detrimental role of the atoms with slow longitudinal velocity in the sub-Doppler response of the Rb ETC is demonstrated by studies in which the cell is tilted from normal incidence of the laser beam. It is also shown that using an ETC allows us to resolve in a moderate external magnetic field the Zeeman splitting of the hyperfine transitions of the 87Rb D 1 transition F g=1F e=1,2. Received: 19 February 2003 / Revised version: 4 April 2003 / Published online: 2 June 2003 RID="*" ID="*"Corresponding author. Fax: +374/32-31172, E-mail: david@ipr.sci.am  相似文献   
90.
A radiofrequency (rf) powered planar magnetron glow discharge ion source has been designed and coupled to a double-focusing mass spectrometer. Superposition of the electrical field of the plasma in the cathode dark space and the magnetic field obtained from a ring-shaped magnet located directly behind the sample (cathode) form the electron traps and enhance the sputtering and ionization efficiency of the ion source. In order to establish optimum conditions for the trace analysis of nonconducting materials, mass spectrometric studies have been carried out on the ion signal intensities and energy distributions of analyte and discharge gas ions depending on pressure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号