首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   799篇
  免费   28篇
  国内免费   7篇
化学   569篇
晶体学   27篇
力学   28篇
数学   27篇
物理学   183篇
  2023年   7篇
  2022年   18篇
  2021年   12篇
  2020年   15篇
  2019年   32篇
  2018年   30篇
  2017年   15篇
  2016年   26篇
  2015年   22篇
  2014年   35篇
  2013年   72篇
  2012年   57篇
  2011年   51篇
  2010年   37篇
  2009年   26篇
  2008年   46篇
  2007年   27篇
  2006年   35篇
  2005年   26篇
  2004年   27篇
  2003年   17篇
  2002年   18篇
  2001年   5篇
  2000年   11篇
  1999年   3篇
  1997年   5篇
  1996年   6篇
  1995年   4篇
  1994年   9篇
  1993年   3篇
  1992年   6篇
  1991年   9篇
  1990年   4篇
  1988年   5篇
  1987年   4篇
  1986年   7篇
  1985年   5篇
  1984年   11篇
  1983年   8篇
  1982年   6篇
  1981年   9篇
  1980年   6篇
  1979年   7篇
  1978年   4篇
  1977年   9篇
  1976年   7篇
  1975年   8篇
  1974年   5篇
  1973年   3篇
  1969年   3篇
排序方式: 共有834条查询结果,搜索用时 15 毫秒
41.
A series of new complexes, Mo(2)O(2)S(2)[S(2)P(OR)(2)](2) (where R = Et, n-Pr, i-Pr) and Mo(2)O(2)S(2)[S(2)POGO](2) (where G = -CH(2)CMe(2)CH(2)-, -CMe(2)CMe(2)-) have been prepared by the dropwise addition of an ethanolic solution of the ammonium or sodium salt of the appropriate O,O-dialkyl or -alkylene dithiophosphoric acid, or the acid itself, to a hot aqueous solution of molybdenum(V) pentachloride. The complexes were also formed by heating solutions of Mo(2)O(3)[S(2)P(OR)(2)](4) or Mo(2)O(3)[S(2)POGO](4) species in glacial acetic acid. The Mo(2)O(2)S(2)[S(2)P(OR)(2)](2) and Mo(2)O(2)S(2)[S(2)POGO](2) compounds were characterized by elemental analyses, (1)H, (13)C, and (31)P NMR, and infrared and Raman spectroscopy, as were the 1:2 adducts formed on reaction with pyridine. The crystal structures of Mo(2)O(2)S(2)[S(2)P(OEt(2))](2), Mo(2)O(2)S(2)[S(2)P(OEt)(2)](2).2NC(5)H(5), and Mo(2)O(3)[S(2)P(OPh)(2)](4) were determined. Mo(2)O(2)S(2)[S(2)P(OEt)(2)](2) (1) crystallizes in space group C2/c, No. 15, with cell parameters a = 15.644(3) ?, b = 8.339(2) ?, c = 18.269(4) ?, beta = 103.70(2) degrees, V = 2315.4(8) ?(3), Z = 4, R = 0.0439, and R(w) = 0.0353. Mo(2)O(2)S(2)[S(2)P(OEt)(2)](2).2NC(5)H(5) (6) crystallizes in space group P&onemacr;, No. 2, with the cell parameters a = 12.663(4) ?,b = 14.291(5) ?, c = 9.349(3) ?, alpha = 100.04(3) degrees, beta = 100.67(3) degrees, gamma = 73.03(3) degrees V = 1557(1) ?(3), Z = 2, R = 0.0593, and R(w) = 0.0535. Mo(2)O(3)[S(2)P(OPh)(2)](4) (8) crystallizes in space group P2(1)/n, No. 14, with cell parameters a = 15.206(2)?, b = 10.655(3)?, c = 19.406(3)?, beta = 111.67(1) degrees, V = 2921(1)?(3), Z = 2, R = 0.0518, R(w) = 0.0425. The immediate environment about the molybdenum atoms in 1 is essentially square pyramidal if the Mo-Mo interaction is ignored. The vacant positions in the square pyramids are occupied by two pyridine molecules in 6, resulting in an octahedral environment with very long Mo-N bonds. The terminal oxygen atoms in both 1 and 6 are in the syn conformation. In 8, which also has a distorted octahedral environment about molybdenum, two of the dithiophosphate groups are bidentate as in 1 and 6, but the two others have one normal Mo-S bond and one unusually long Mo-S bond.  相似文献   
42.
43.
An efficient method was developed for the synthesis of highly substituted naphthalenes through rhodium‐catalyzed oxidative benzannulation of N‐pivaloylanilines with internal alkynes. The benzannulation reaction proceeded smoothly through dual C?H bond activation to produce the corresponding highly substituted naphthalene products in satisfactory to good yields.  相似文献   
44.
In this study, the photocatalytic dye degradation efficiency of KTi0.5Te1.5O6 synthesized through solid‐state method was enhanced by cation (Ag+/Sn+2) doping at potassium site via ion exchange method. As prepared materials were characterized by XRD, SEM‐EDS, IR, TGA and UV–Vis Diffuse reflectance spectroscopic (DRS) techniques. All the compounds were crystallized in cubic lattice with space group. The bandgap energies of parent, Ag+‐ and Sn+2‐doped KTi0.5Te1.5O6 materials obtained from DRS profiles were found to be 2.96, 2.55 and 2.40 eV, respectively. Photocatalytic efficiency of parent, Ag+‐ and Sn+2‐doped materials was evaluated against the degradation of methylene blue (MB) and methyl violet (MV) dyes under visible light irradiation. The Sn+2‐doped KTi0.5Te1.5O6 showed higher activity toward the degradation of both MB and MV dyes and its higher activity is ascribed to the lower bandgap energy compared to the parent and Ag+‐doped KTi0.5Te1.5O6. The mechanistic degradation pathway of methylene blue (MB) was studied in the presence of Sn2+‐doped KTi0.5Te1.5O6. Quenching experiments were performed to know the participation of holes, super oxide and hydroxyl radicals in the dye degradation process. The stability and reusability of the catalysts were studied.  相似文献   
45.
Zinc oxide nanoparticles (NanoZnO) uniformly dispersed in chitosan (CHIT) have been used to fabricate a hybrid nanocomposite film onto indium-tin-oxide (ITO) glass plate. Cholesterol oxidase (ChOx) has been immobilized onto this NanoZnO-CHIT composite film using physiosorption technique. Both NanoZnO-CHIT/ITO electrode and ChOx/NanoZnO-CHIT/ITO bioelectrode have been characterized using Fourier transform-infrared (FTIR), X-ray diffraction (XRD), cyclic voltammetry (CV), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) techniques, respectively. The ChOx/NanoZnO-CHIT/ITO bioelectrode exhibits linearity from 5 to 300 mg dl−1 of cholesterol with detection limit as 5 mg dl−1, sensitivity as 1.41 × 10−4 A mg dl−1 and the value of Michaelis-Menten constant (Km) as 8.63 mg dl−1. This cholesterol biosensor can be used to estimate cholesterol in serum samples.  相似文献   
46.
(S)-2-Hydroxy-2'-(3-phenyluryl-benzyl)-1,1'-binaphthyl-3-carboxaldehyde (1) forms Schiff bases with a wide range of nonderivatized amino acids, including unnatural ones. Multiple hydrogen bonds, including resonance-assisted ones, fix the whole orientation of the imine and provoke structural rigidity around the imine C==N bond. Due to the structural difference and the increase in acidity of the alpha proton of the amino acid, the imine formed with an L-amino acid (1-l-aa) is converted into the imine of the D-amino acid (1-D-aa), with a D/L ratio of more than 10 for most amino acids at equilibrium. N-terminal amino acids in dipeptides are also predominantly epimerized to the D form upon imine formation with 1. Density functional theory calculations show that 1-D-Ala is more stable than 1-L-Ala by 1.64 kcal mol(-1), a value that is in qualitative agreement with the experimental result. Deuterium exchange of the alpha proton of alanine in the imine form was studied by (1)H NMR spectroscopy and the results support a stepwise mechanism in the L-into-D conversion rather than a concerted one; that is, deprotonation and protonation take place in a sequential manner. The deprotonation rate of L-Ala is approximately 16 times faster than that of D-Ala. The protonation step, however, appears to favor L-amino acid production, which prevents a much higher predominance of the D form in the imine. Receptor 1 and the predominantly D-form amino acid can be recovered from the imine by simple extraction under acidic conditions. Hence, 1 is a useful auxiliary to produce D-amino acids of industrial interest by the conversion of naturally occurring L-amino acids or relatively easily obtainable racemic amino acids.  相似文献   
47.
Two new series of Boc‐N‐α,δ‐/δ,α‐ and β,δ‐/δ,β‐hybrid peptides containing repeats of L ‐Ala‐δ5‐Caa/δ5‐Caa‐L ‐Ala and β3‐Caa‐δ5‐Caa/δ5‐Caa‐β3‐Caa (L ‐Ala = L ‐alanine, Caa = C‐linked carbo amino acid derived from D ‐xylose) have been differentiated by both positive and negative ion electrospray ionization (ESI) ion trap tandem mass spectrometry (MS/MS). MSn spectra of protonated isomeric peptides produce characteristic fragmentation involving the peptide backbone, the Boc‐group, and the side chain. The dipeptide positional isomers are differentiated by the collision‐induced dissociation (CID) of the protonated peptides. The loss of 2‐methylprop‐1‐ene is more pronounced for Boc‐NH‐L ‐Ala‐δ‐Caa‐OCH3 (1), whereas it is totally absent for its positional isomer Boc‐NH‐δ‐Caa‐L ‐Ala‐OCH3 (7), instead it shows significant loss of t‐butanol. On the other hand, second isomeric pair shows significant loss of t‐butanol and loss of acetone for Boc‐NH‐δ‐Caa‐β‐Caa‐OCH3 (18), whereas these are insignificant for its positional isomer Boc‐NH‐β‐Caa‐δ‐Caa‐OCH3 (13). The tetra‐ and hexapeptide positional isomers also show significant differences in MS2 and MS3 CID spectra. It is observed that ‘b’ ions are abundant when oxazolone structures are formed through five‐membered cyclic transition state and cyclization process for larger ‘b’ ions led to its insignificant abundance. However, b1+ ion is formed in case of δ,α‐dipeptide that may have a six‐membered substituted piperidone ion structure. Furthermore, ESI negative ion MS/MS has also been found to be useful for differentiating these isomeric peptide acids. Thus, the results of MS/MS of pairs of di‐, tetra‐, and hexapeptide positional isomers provide peptide sequencing information and distinguish the positional isomers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
48.
A series of Eu3+ ions co-doped (Gd0.9Y0.1)3Al5O12:Bi3+, Tb3+ (GYAG) phosphors have been synthesized by means of solvothermal reaction method. The XRD pattern of GYAG phosphor sintered at 1500 °C confirms their garnet phase. The luminescence properties of these phosphors have been explored by analyzing their excitation and emission spectra along with their decay curves. The excitation spectra of the GYAG:Bi3+, Tb3+, Eu3+ phosphors consists of broad bands in the shorter wavelength region due to 4f8 → 4f75d1 transition of Tb3+ ions overlapped with 6s2 → 6s16p1 (1S0 → 3P1) transition of Bi3+ ions and the charge transfer band of Eu3+–O2?. The present phosphors exhibit green and red colors due to 5D4 → 7F5 transition of Tb3+ ions and 5D0 → 7F1 transition of Eu3+ ions, respectively. The emission was shifted from green to red color by co-doping with Eu3+ ions, which indicate that the energy transfer probability from Tb3+ to Eu3+ ions are dependent strongly on the concentration of Eu3+ ions.  相似文献   
49.
The success of nucleic acid delivery requires the development of safe and efficient delivery vectors that overcome cellular barriers for effective transport. Herein we describe the synthesis of a series of novel, single-chain rigid cationic carotenoid lipids and a study of their preliminary in vitro siRNA delivery effectiveness and cellular toxicity. The efficiency of siRNA delivery by the single-chain lipid series was compared with that of known cationic lipid vectors, 3β-[N-(N',N'-dimethylaminoethane)carbamoyl]-cholesterol (DC-Chol) and 1,2-dimyristoyl-sn-glyceryl-3-phosphoethanolamine (EPC) as positive controls. All cationic lipids (controls and single-chain lipids) were co-formulated into liposomes with the neutral co-lipid, 1,2-dioleolyl-sn-glycerol-3-phosphoethanolamine (DOPE). Cationic lipid-siRNA complexes of varying (+/-) molar charge ratios were formulated for delivery into HR5-CL11 cells. Of the five single-chain carotenoid lipids investigated, lipids 1, 2, 3 and 5 displayed significant knockdown efficiency with HR5-CL11 cells. In addition, lipid 1 exhibited the lowest levels of cytotoxicity with cell viability greater than 80% at all (+/-) molar charge ratios studied. This novel, single-chain rigid carotenoid-based cationic lipid represents a new class of transfection vector with excellent cell tolerance, accompanied with encouraging siRNA delivery efficiency.  相似文献   
50.
A highly sensitive, selective and rapid liquid chromatography–electrospray ionization mass spectrometry (LC‐MS) method has been developed and validated for simultaneous determination of moxifloxacin (MFX) and ketorolac (KTC) in rat plasma. Gemifloxacin (GFX) was used as an internal standard (IS). A simple protein precipitation method was used for the extraction of analytes from rat plasma. Effective chromatographic separation of MFX, KTC and GFX was achieved on a Kromasil C18 column (100 × 4.6 mm, 5 µm) using a mobile phase consisting of acetonitrile–10 mm ammonium acetate (pH 2.5)–0.1% formic acid (50:25:25) in an isocratic elution, followed by detection with positive ion electrospray ionization mass spectrometry using target ions of [M + H]+ at m/z 402 for MFX, m/z 256 for KTC and m/z 390 for GFX in selective ion recording mode. The method was validated over the calibration range of 5–100 ng/mL for MFX and 10–6000 ng/mL for KTC. The method demonstrated good performances in terms of intra‐ and inter‐day precision (0.97–5.33%) and accuracy (93.91–101.58%) for both MFX and KTC, including lower and upper limits of quantification. The recoveries from spiked control samples were >75% for MFX and >79% for KTC. The matrix effect was found to be negligible and the stability data were within acceptable limits. Further, the method was also successfully applied to a single‐dose pharmacokinetic study in rats. This method can be extended to measure plasma concentrations of both drugs in human to understand drug interaction and adverse effects. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号