首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   1篇
化学   67篇
数学   5篇
物理学   8篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   2篇
  2014年   1篇
  2013年   6篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   5篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1997年   1篇
  1996年   2篇
  1991年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1980年   3篇
  1979年   6篇
  1976年   3篇
  1975年   3篇
  1964年   1篇
  1963年   3篇
  1962年   1篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
21.
A new synthesis of a series of 3‐amino‐1H‐quinazoline‐2,4‐diones is described. The 1H‐quinazoline‐2,4‐dione 10 was made starting with fluorobenzoic acid in three high yielding steps. The key step of this synthesis involved the generation of the dianion of urea 7 and the subsequent intramolecular nucleophilic displacement of the 2‐fluoro to form the quinazolinedione ring. The 3‐amino moiety was incorporated using (2,4‐dinitro‐phenyl)‐hydroxylamine as the aminating reagent.  相似文献   
22.
23.
24.
The energy payback time associated with the semiconductor active material is an important parameter in a photovoltaic solar cell device. Thus lowering the energy requirements for the semiconductor synthesis step or making it more energy-efficient is critical toward making the overall device economics more competitive relative to other nonpolluting energy options. In this communication, combustion synthesis is demonstrated to be a versatile and energy-efficient method for preparing inorganic oxide semiconductors such as tungsten trioxide (WO3) for photovoltaic or photocatalytic solar energy conversion. The energy efficiency of combustion synthesis accrues from the fact that high process temperatures are self-sustained by the exothermicity of the combustion process, and the only external thermal energy input needed is for dehydration of the fuel/oxidizer precursor mixture and bringing it to ignition. Importantly, we show that, in this approach, it is also possible to tune the optical characteristics of the oxide semiconductor (i.e., shift its response toward the visible range of the electromagnetic spectrum) in situ by doping the host semiconductor during the formative stage itself. As a bonus, the resultant material shows enhanced surface properties such as markedly improved organic dye uptake relative to benchmark samples obtained from commercial sources. Finally, this synthesis approach requires only very simple equipment, a feature that it shares with other "mild" inorganic semiconductor synthesis routes such as sol-gel chemistry, chemical bath deposition, and electrodeposition. The present study constitutes the first use of combustion synthesis for preparing WO3 powder comprising nanosized particles.  相似文献   
25.
Vacuum anneal induced changes in the surface layers of electrodeposited copper(I) oxide (Cu2O) were probed by time-of-flight positron annihilation induced Auger electron spectroscopy (TOF-PAES) and by electron induced Auger electron spectroscopy (EAES). Large changes in the intensity of the Cu PAES intensity resulting from isochronal in situ vacuum anneals made at increasing temperatures indicated that, before thermal treatment, the surface was completely covered by a carbonaceous overlayer and that this layer was removed, starting at a temperature between 100 and 200 degrees C, to expose an increasing amount of Cu in the top layer as the anneal temperature was increased. The thickness of this overlayer was estimated to be approximately 4 A based on analysis of the EAES data, and its variation with the thermal anneal temperature was mapped. This study demonstrated the order-of-magnitude enhancement in the sensitivity of PAES to the topmost surface layer in Cu2O relative to the EAES counterpart; factors underlying this contrast are discussed. Finally, the implications of ultrathin carbon layers on semiconductor surfaces are discussed.  相似文献   
26.
Glucose oxidase (GOD) and catalase (CAT) were covalently immobilized onto three types of polyacrylonitrile (PAN 1, PAN 2, and PAN 3) ultrafiltration (UF) membranes with different pore sizes and one type of polyamide (PA) microfiltration (MF) membrane by the bifunctional reagent, glutaraldehyde. The initial membranes were pre-modified to generate active amide groups in the PAN membranes and active amino groups in the PA membranes. The PAN 3 membrane contained the highest amount of active groups, and the membrane PA the lowest. The modified membranes were enzyme-loaded by diffusion and convection (UF). The effect of membrane pore size and immobilization methods on enzymatic activity and bound protein were studied. The most effective immobilized system was prepared by diffusion using a PAN 3 membrane as a carrier (bound protein: 0.055 mg/cm(2), relative activity: 87.6%). This membrane had the highest pore size of all the PAN membranes. Despite the highest pore size of PA membrane, the enzyme PA membranes prepared by diffusion showed the lowest amount of bound protein (0.03 mg/cm(2)) and the lowest relative activity (35.38%). This correlates with the lowest amount of active groups found in these membranes. The relative activity was higher for all the enzyme systems loaded by diffusion. The systems prepared by convection of the enzyme solution contained higher amounts of enzymes (0.035-0.13 mg/cm(2) protein), which led to internal substrate diffusion resistance and a decrease in the GOD relative activity (21.55-68.5%) in these systems. The kinetic parameters (V(max) and K(m)) and the glucose conversion of the immobilized systems prepared by diffusion were also studied. [diagram in text].  相似文献   
27.
The dinuclear ruthenium complex [(phen)2Ru(tatpp)Ru(phen)2]4+ (P; in which phen is 1,10-phenanthroline and tatpp is 9,11,20,22-tetraaza tetrapyrido[3,2-a:2'3'-c:3',2'-l:2',3']-pentacene) undergoes a photodriven two-electron reduction in aqueous solution, thus storing light energy as chemical potential within its structure. The mechanism of this reduction is strongly influenced by the pH, in that basic conditions favor a sequential process involving two one-electron reductions and neutral or slightly acidic conditions favor a proton-coupled, bielectronic process. In this complex, the central tatpp ligand is the site of electron storage and protonation of the central aza nitrogen atoms in the reduced products is observed as a function of the solution pH. The reduction mechanism and characterization of the rich array of products were determined by using a combination of cyclic and AC voltammetry along with UV-visible reflectance spectroelectrochemistry experiments. Both the reduction and protonation state of P could be followed as a function of pH and potential. From these data, estimates of the various reduced species' pKa values were obtained and the mechanism to form the doubly reduced, doubly protonated complex, [(phen)2Ru(H2tatpp)Ru(phen)2]4+ (H2P) at low pH (< or =7) could be shown to be a two-proton, two-electron process. Importantly, H2P is also formed in the photochemical reaction with sacrificial reducing agents, albeit at reduced yields relative to those at higher pH.  相似文献   
28.
Moisture and pore water are found to have appreciable effects on the dielectric parameters of Green River oil shale. A regular decrease in the relative dielectric constant, ε′, and dielectric loss, ε″, with decreasing amount of adsorbed moisture and pore water is observed at 24°C for oil shale samples ranging in oil yields from ~6-~100 gallons per ton. The weak dependence of ε′ and ε″ on shale richness at frequencies in the range 50 Hz-1 MHz effectively rules out the application of dielectric techniques as an assay tool. The results are discussed in terms of interfacial polarization effects arising from the presence of adsorbed moisture and pore water in the oil shale matrix.  相似文献   
29.
30.
The impact of solar radiation upon potentially protective compounds (i.e., UV-absorbing compounds and carotenoids) was assessed in four Rhodophyte species from Patagonia (i.e., Ceramium sp. Lyngbye, Corallina officinalis Linnaeus, Callithamnion gaudichaudii Agardh and Porphyra columbina Montagne) during short-term (i.e., 46 h) experiments. Algae were exposed to solar radiation under two treatments (PAR only: 400-700 nm, and PAR+UVR: 280-700 nm) and sub-samples were taken every 3 h (or longer periods at night) to determine the spectral absorption characteristics and concentration of UV-absorbing compounds, carotenoids and photosynthetic pigments. Except for C. gaudichaudii which displayed a decrease in chl-a concentration throughout the experiment, photosynthetic pigments had small variations in all species. UV-absorbing compounds concentration had species-specific responses: Ceramium sp. was the only species in which UV-absorbing compounds concentration varied as a function of solar irradiance, with maximum values around local noon. In C. officinalis and P. columbina UV-absorbing compounds concentration increased as compared to that of chl-a; in Ceramium sp. and C. gaudichaudii, however, there was no relationship between UV-absorbing compounds content and chl-a concentration. Carotenoids, on the other hand, did co-vary with chl-a in all species. Our data suggest that, with the exception of C. gaudichaudii, the differential responses of UV-absorbing compounds concentrations are more associated to the previous light history of the algae (i.e., in turn due to their position in the intertidal zone) rather than to the radiation treatment imposed to the samples. Based on our results, the variable impact of solar radiation upon productivity (and eventually biodiversity) of macroalgae from Patagonia might consequently differentially affect higher trophic levels of the aquatic food web.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号