全文获取类型
收费全文 | 170篇 |
免费 | 3篇 |
专业分类
化学 | 90篇 |
晶体学 | 2篇 |
力学 | 13篇 |
数学 | 16篇 |
物理学 | 52篇 |
出版年
2023年 | 3篇 |
2022年 | 3篇 |
2021年 | 6篇 |
2020年 | 8篇 |
2019年 | 7篇 |
2018年 | 8篇 |
2017年 | 3篇 |
2016年 | 8篇 |
2015年 | 4篇 |
2014年 | 4篇 |
2013年 | 17篇 |
2012年 | 10篇 |
2011年 | 19篇 |
2010年 | 7篇 |
2009年 | 8篇 |
2008年 | 12篇 |
2007年 | 7篇 |
2006年 | 5篇 |
2005年 | 11篇 |
2004年 | 3篇 |
2003年 | 2篇 |
2001年 | 1篇 |
1999年 | 1篇 |
1997年 | 1篇 |
1996年 | 2篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1992年 | 2篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1983年 | 1篇 |
1935年 | 1篇 |
排序方式: 共有173条查询结果,搜索用时 0 毫秒
171.
Rajat Mittal 《国际流体数值方法杂志》1999,30(7):921-937
An accurate Fourier–Chebyshev spectral collocation method has been developed for simulating flow past prolate spheroids. The incompressible Navier–Stokes equations are transformed to the prolate spheroidal co‐ordinate system and discretized on an orthogonal body fitted mesh. The infinite flow domain is truncated to a finite extent and a Chebyshev discretization is used in the wall‐normal direction. The azimuthal direction is periodic and a conventional Fourier expansion is used in this direction. The other wall‐tangential direction requires special treatment and a restricted Fourier expansion that satisfies the parity conditions across the poles is used. Issues including spatial and temporal discretization, efficient inversion of the pressure Poisson equation, outflow boundary condition and stability restriction at the pole are discussed. The solver has been validated primarily by simulating steady and unsteady flow past a sphere at various Reynolds numbers and comparing key quantities with corresponding data from experiments and other numerical simulations. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
172.
Vijay Vedula Jung-Hee Seo Albert C. Lardo Rajat Mittal 《Theoretical and Computational Fluid Dynamics》2016,30(1-2):3-21
The impact of surface trabeculae and papillary muscles on the hemodynamics of the left ventricle (LV) is investigated using numerical simulations. Simulations of ventricular flow are conducted for two different models of the LV derived from high-resolution cardiac computed tomography (CT) scans using an immersed boundary method-based flow solver. One model comprises a trabeculated left ventricle (TLV) that includes both trabeculae and papillary muscles, while the second model has a smooth left ventricle that is devoid of any of these surface features. Results indicate that the trabeculae and papillary muscles significantly disrupt the vortices that develop during early filling in the TLV model. Large recirculation zones are found to form in the wake of the papillary muscles; these zones enhance the blockage provided by the papillary muscles and create a path for the mitral jet to penetrate deeper into the ventricular apex during diastole. During systole, the trabeculae enhance the apical washout by ‘squeezing’ the flow from the apical region. Finally, the trabeculae enhance viscous dissipation rate of the ventricular flow, but this effect is not significant in the overall power budget. 相似文献
173.
Rajat K. Bhaduri 《Indian Journal of Physics》2009,83(5):677-680
Professor Manoj Banerjee had a commanding arsenal of techniques to gain insight into the secrets of the nucleon. After a brief overview of some of his contributions in intermediate energy nuclear physics, we describe the chiral quark-meson model of the nucleon that he developed with Birse and Broniowski. 相似文献