首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1172篇
  免费   37篇
  国内免费   5篇
化学   785篇
晶体学   50篇
力学   21篇
数学   71篇
物理学   287篇
  2023年   12篇
  2022年   28篇
  2021年   33篇
  2020年   29篇
  2019年   37篇
  2018年   33篇
  2017年   21篇
  2016年   38篇
  2015年   26篇
  2014年   37篇
  2013年   80篇
  2012年   69篇
  2011年   66篇
  2010年   52篇
  2009年   49篇
  2008年   68篇
  2007年   51篇
  2006年   36篇
  2005年   33篇
  2004年   28篇
  2003年   25篇
  2002年   26篇
  2001年   31篇
  2000年   49篇
  1999年   57篇
  1998年   13篇
  1997年   9篇
  1996年   10篇
  1995年   6篇
  1994年   8篇
  1993年   9篇
  1992年   7篇
  1991年   9篇
  1990年   6篇
  1989年   7篇
  1987年   5篇
  1986年   8篇
  1985年   14篇
  1984年   8篇
  1983年   5篇
  1982年   8篇
  1981年   3篇
  1980年   6篇
  1979年   8篇
  1977年   12篇
  1976年   5篇
  1975年   4篇
  1974年   5篇
  1973年   4篇
  1972年   4篇
排序方式: 共有1214条查询结果,搜索用时 15 毫秒
51.
The self-assembled monolayer of the thiocholesterol (TCh) exhibits interesting properties that can be used for various technological applications. TCh is predominantly a hydrophobic molecule, and it does not spread at the air–water interface to form a stable Langmuir monolayer. We have stabilized the TCh molecules in the cholesterol (Ch) monolayer. We find the mixed monolayer to be stable upto 0.75 mole fraction of TCh in Ch. The mixed monolayer shows an initial and a final collapse. On compressing the monolayer beyond the initial collapse, the TCh molecules squeeze out irreversibly from the mixed monolayer phase. The calculation of excess area per molecule for the TCh and Ch mixed monolayer system indicates an attractive interaction between the component molecules. Interestingly, the elasticity of the Ch monolayer reduces to less than half, and the monolayer becomes more fluidic due to the presence of even very minute quantity (5%) of TCh.  相似文献   
52.
MgIn(2)O(4), which has an inverse spinel structure, has been adopted as the transparent material in optoelectronic device fabrication due to its high optical transparency and electrical conductivity. Such a technologically important material was prepared by the spray pyrolysis technique. Precursors prepared for the cationic ratio Mg/In=0.5 were thermally sprayed onto glass substrates at 400 and 450 degrees C. We report herein the preparation and characterization of the films by X-ray diffraction (XRD), energy-dispersive absorption X-ray spectroscopy (EDAX), and atomic force microscopy (AFM). The XRD results showed the single phase formation of the material that revealed the presence of Mg(2+) and In(3+) in the inverse spinel-related structure. The FTIR and EDAX results further confirmed that the nanocrystalline films were mainly composed of magnesium, indium, and oxygen, in agreement with XRD analysis. We surmised from the AFM micrographs that the atoms have enough diffusion activation energy to occupy the correct site in the crystal lattice. For the 423-nm-thick magnesium indium oxide films grown at 400 degrees C, the electrical conductivity was 5.63x10(-6) Scm(-1) and the average optical transmittance was 63% in the visible range (400-700 nm). Similar MgIn(2)O(4) films deposited at 450 degrees C have a conductivity value of 1.5x10(-5) Scm(-1) and an average transmittance of 75%. Hall coefficient observations showed n-type electrical conductivity and high electron carrier concentration of 2.7x10(19) cm(-3).  相似文献   
53.
Molecular structures, energetics, vibrational frequencies, and electron affinities are predicted for the phenylethynyl radical and its isomers. Electron affinities are computed using density functional theory, -namely, the BHLYP, BLYP, B3LYP, BP86, BPW91, and B3PW91 functionals-, employing the double-zeta plus polarization DZP++ basis set; this level of theory is known to perform well for the computation of electron affinities. Furthermore, ab initio computations employing perturbation theory, coupled cluster with single and double excitations [CCSD], and the inclusion of perturbative triples [CCSD(T)] are performed to determine the relative energies of the isomers. These higher level computations are performed with the correlation consistent family of basis sets cc-pVXZ (X = D, T, Q, 5). Three electronic states are probed for the phenylethynyl radical. In C2v symmetry, the out-of-plane (2B1) radical is predicted to lie about 10 kcal/mol below the in-plane (2B2) radical by DFT methods, which becomes 9.4 kcal/mol with the consideration of the CCSD(T) method. The energy difference between the lowest pi and sigma electronic states of the phenylethynyl radical is also about 10 kcal/mol according to DFT; however, CCSD(T) with the cc-pVQZ basis set shows this energy separation to be just 1.8 kcal/mol. The theoretical electron affinities of the phenylethynyl radical are predicted to be 3.00 eV (B3LYP/DZP++) and 3.03 eV (CCSD(T)/DZP++//MP2/DZP++). The adiabatic electron affinities (EAad) of the three isomers of phenylethynyl, that is, the ortho-, meta-, and para-ethynylphenyl, are predicted to be 1.45, 1.40, and 1.43 eV, respectively. Hence, the phenylethynyl radical binds an electron far more effectively than the three other radicals studied. Thermochemical predictions, such as the bond dissociation energies of the aromatic and ethynyl C-H bonds and the proton affinities of the phenylethynyl and ethynylphenyl anions, are also reported.  相似文献   
54.
Maya V  Raj M  Singh VK 《Organic letters》2007,9(13):2593-2595
We have demonstrated that small organic molecules 1 and 2 catalyzed the direct aldol reaction of both acyclic and cyclic ketones with different aldehydes in an excess of water/brine. Excellent enantioselectivities up to >99% and diastereoselectivities up to 99% with very good yields were obtained by using much lower catalyst loadings (0.5 mol %).  相似文献   
55.
Generation of a surface-confined redox mediator (RM) by an electrochemically triggered Michael addition reaction and the electrocatalytic properties of the mediator are described. Electrogenerated o-quinone undergoes Michael addition reaction with the self-assembled monolayer (SAM) of 4-thiouracil (4-TU) on a gold (Au) electrode and yields a surface-confined RM, 1-(3,4-dihydroxyphenyl)-4-mercapto-1H-pyrimidin-2-one (DPTU). The Michael addition reaction depends on the electrolysis potential and time, solution pH, and concentration of catechol (CA) used in the reaction. The redox mediator, DPTU, exhibits reversible redox response, characterstic of a surface-confined species at approximately 0.22 V in neutral pH. The anodic peak potential of DPTU shifts by 58+/-2 mV while changing the solution pH by one unit, suggesting that protons and electrons taking part in the redox reaction are in the ratio of 1:1. The apparent rate constant (ksapp) for the heterogeneous electron-transfer reaction of the RM was determined to be 114+/-5 s-1. The surface coverage (Gamma) of DPTU on the electrode surface was 8.2+/-0.1x10(-12) mol/cm2. DPTU shows excellent electrocatalytic activity toward oxidation of reduced nicotinamide adenine dinucleotide (NADH) with activation overpotential, which is approximately 600 mV lower than that observed at the unmodified Au electrode. The dipositive cations in the supporting electrolyte solution amplify the electrocatalytic activity of DPTU. A 2.5-fold enhancement in the catalytic current was observed in the presence of Ca2+ or Ba2+ ions. The sensitivity of the electrode toward NADH in the presence and absence of Ca2+ ions was 0.094+/-0.011 and 0.04+/-0.0071 nA cm-2 nM-1, respectively. A linear increase in the catalytic current was obtained up to the concentration of 0.8 mM, and the electrode can detect amperometrically as low as 25 nM of NADH in neutral pH.  相似文献   
56.
A ring-closing metathesis approach was employed for the synthesis of a β-C-glycoside analog of the immunostimulant KRN7000. The protected C-glycosyl amino acid derivative 18 was converted to amino-olefin 20, and osmylation served to install the diol unit as a mixture of separable syn and anti isomers. Deprotection to the hydroxy-amine 21 was followed by N-acylation and debenzylation to deliver the target compound 5.  相似文献   
57.
This article describes the synthesis of branched flower-like gold (Au) nanocrystals and their electrocatalytic activity toward the oxidation of methanol and the reduction of oxygen. Gold nanoflowers (GNFs) were obtained by a one-pot synthesis using N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid (HEPES) as a reducing/stabilizing agent. The GNFs have been characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and electrochemical measurements. The UV-visible spectra show two bands corresponding to the transverse and longitudinal surface plasmon (SP) absorption at 532 and 720 nm, respectively, for the colloidal GNFs. The GNFs were self-assembled on a sol-gel-derived silicate network, which was preassembled on a polycrystalline Au electrode and used for electrocatalytic applications. The GNFs retain their morphology on the silicate network; the UV-visible diffuse reflectance spectra (DRS) of GNFs on the silicate network show longitudinal and transverse bands as in the case of colloidal GNFs. The GNFs show excellent electrocatalytic activity toward the oxidation of methanol and the reduction of oxygen. Oxidation of methanol in alkaline solution was observed at approximately 0.245 V, which is much less positive than that on an unmodified polycrystalline gold electrode. Reduction of oxygen to H2O2 and the further reduction of H2O2 to water in neutral pH were observed at less negative potentials on the GNFs electrode. The electrocatalytic activity of GNFs is significantly higher than that of the spherically shaped citrate-stabilized Au nanoparticles (SGNs).  相似文献   
58.
59.
The highly conserved HIV-1 transactivation response element (TAR) binds to the trans-activator protein Tat and facilitates viral replication in its latent state. The inhibition of Tat–TAR interactions by selectively targeting TAR RNA has been used as a strategy to develop potent antiviral agents. Therefore, HIV-1 TAR RNA represents a paradigmatic system for therapeutic intervention. Herein, we have employed biotin-tagged TAR RNA to assemble its own ligands from a pool of reactive azide and alkyne building blocks. To identify the binding sites and selectivity of the ligands, the in situ cycloaddition has been further performed using control nucleotide (TAR DNA and TAR RNA without bulge) templates. The hit triazole-linked thiazole peptidomimetic products have been isolated from the biotin-tagged target templates using streptavidin beads. The major triazole lead generated by the TAR RNA presumably binds in the bulge region, shows specificity for TAR RNA over TAR DNA, and inhibits Tat–TAR interactions.  相似文献   
60.
The three-phase (vapour + liquid + solid) equilibrium conditions for semi-clathrates formed from three mixtures of (CO2 + N2), in aqueous solutions of tetra-butyl ammonium bromide (TBAB), were measured in an isochoric reactor. The experiments were conducted at temperatures between (281 and 290) K, at pressures between (1.9 and 5.9) MPa and in aqueous TBAB solutions of wTBAB = (0.05, 0.10, and 0.20). The experimental results obtained in this study were compared with previously obtained results for gas hydrates, formed from the same three mixtures of (CO2 + N2) and it was observed that semi-clathrates formed at a substantially lower pressure than did gas hydrates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号