首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53152篇
  免费   17425篇
  国内免费   62篇
化学   63140篇
晶体学   65篇
力学   2358篇
数学   3564篇
物理学   1512篇
  2024年   459篇
  2023年   4758篇
  2022年   1626篇
  2021年   2794篇
  2020年   5161篇
  2019年   2579篇
  2018年   2560篇
  2017年   671篇
  2016年   6157篇
  2015年   6139篇
  2014年   5555篇
  2013年   5782篇
  2012年   3562篇
  2011年   1283篇
  2010年   3801篇
  2009年   3750篇
  2008年   1251篇
  2007年   931篇
  2006年   249篇
  2005年   217篇
  2004年   188篇
  2003年   139篇
  2002年   131篇
  1997年   157篇
  1996年   151篇
  1995年   217篇
  1994年   161篇
  1993年   291篇
  1992年   152篇
  1988年   166篇
  1987年   144篇
  1986年   129篇
  1985年   155篇
  1984年   167篇
  1983年   156篇
  1982年   187篇
  1981年   193篇
  1980年   242篇
  1979年   242篇
  1978年   252篇
  1977年   366篇
  1976年   418篇
  1975年   490篇
  1974年   515篇
  1973年   338篇
  1972年   471篇
  1971年   429篇
  1970年   634篇
  1969年   461篇
  1968年   504篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
One of the most applied reaction types to synthesize shape-persistent organic cage compounds is the imine condensation reaction and it is assumed that the formed cages are thermodynamically controlled products due to the reversibility of the imine condensation. However, most of the synthesized imine cages reported are formed as precipitate from the reaction mixture and therefore rather may be kinetically controlled products. There are even examples in literature, where resulting cages are not soluble at all in common organic solvents to characterize or study their formation by NMR spectroscopy in solution. Here, a triptycene triamine containing three solubilizing n-hexyloxy chains has been used to synthesize soluble congeners of prior insoluble cages. This allowed us to study the formation as well as the reversibility of cage formation in solution by investigating exchange of building blocks between the cages and deuterated derivatives thereof.  相似文献   
992.
Owing to the limited availability of suitable precursors for vapor phase deposition of rare-earth containing thin-film materials, new or improved precursors are sought after. In this study, we explored new precursors for atomic layer deposition (ALD) of cerium (Ce) and ytterbium (Yb) containing thin films. A series of homoleptic tris-guanidinate and tris-amidinate complexes of cerium (Ce) and ytterbium (Yb) were synthesized and thoroughly characterized. The C-substituents on the N-C-N backbone (Me, NMe2, NEt2, where Me=methyl, Et=ethyl) and the N-substituents from symmetrical iso-propyl (iPr) to asymmetrical tertiary-butyl (tBu) and Et were systematically varied to study the influence of the substituents on the physicochemical properties of the resulting compounds. Single crystal structures of [Ce(dpdmg)3] 1 and [Yb(dpdmg)3] 6 (dpdmg=N,N'-diisopropyl-2-dimethylamido-guanidinate) highlight a monomeric nature in the solid-state with a distorted trigonal prismatic geometry. The thermogravimetric analysis shows that the complexes are volatile and emphasize that increasing asymmetry in the complexes lowers their melting points while reducing their thermal stability. Density functional theory (DFT) was used to study the reactivity of amidinates and guanidinates of Ce and Yb complexes towards oxygen (O2) and water (H2O). Signified by the DFT calculations, the guanidinates show an increased reactivity toward water compared to the amidinate complexes. Furthermore, the Ce complexes are more reactive compared to the Yb complexes, indicating even a reactivity towards oxygen potentially exploitable for ALD purposes. As a representative precursor, the highly reactive [Ce(dpdmg)3] 1 was used for proof-of-principle ALD depositions of CeO2 thin films using water as co-reactant. The self-limited ALD growth process could be confirmed at 160 °C with polycrystalline cubic CeO2 films formed on Si(100) substrates. This study confirms that moving towards nitrogen-coordinated rare-earth complexes bearing the guanidinate and amidinate ligands can indeed be very appealing in terms of new precursors for ALD of rare earth based materials.  相似文献   
993.
Artificial nucleic acids are widely used in various technologies, such as nucleic acid therapeutics and DNA nanotechnologies requiring excellent duplex-forming abilities and enhanced nuclease resistance. 2′-O,4′-C-Methylene-bridged nucleic acid/locked nucleic acid (2′,4′-BNA/LNA) with 1,3-diaza-2-oxophenoxazine (BNAP ( BH )) was previously reported. Herein, a novel BH analogue, 2′,4′-BNA/LNA with 9-(2-aminoethoxy)-1,3-diaza-2-oxophenoxazine (G-clamp), named BNAP-AEO ( BAEO ), was designed. The BAEO nucleoside was successfully synthesized and incorporated into oligodeoxynucleotides (ODNs). ODNs containing BAEO possessed up to 104-, 152-, and 11-fold higher binding affinities for complementary (c) RNA than those of ODNs containing 2′-deoxycytidine ( C ), 2′,4′-BNA/LNA with 5-methylcytosine ( L ), or 2′-deoxyribonucleoside with G-clamp ( PAEO ), respectively. Moreover, duplexes formed by ODN bearing BAEO with cDNA and cRNA were thermally stable, even under molecular crowding conditions induced by the addition of polyethylene glycol. Furthermore, ODN bearing BAEO was more resistant to 3′-exonuclease than ODNs with phosphorothioate linkages.  相似文献   
994.
A six-step synthesis towards a tribenzotriquinacene (TBTQ) bearing three quinoxalinophenanthrophenazine (QPP) units is presented. The optoelectronic properties are investigated and the effect of the three-dimensional arrangement of the individual QPP planes is examined using optical spectroscopy, electrochemical analysis and quantum-chemical calculations.  相似文献   
995.
Ultrasmall gold nanoparticles (diameter about 2 nm) were surface-functionalized with cysteine-carrying precision macromolecules. These consisted of sequence-defined oligo(amidoamine)s (OAAs) with either two or six cysteine molecules for binding to the gold surface and either with or without a PEG chain (3400 Da). They were characterized by 1H NMR spectroscopy, 1H NMR diffusion-ordered spectroscopy (DOSY), small-angle X-ray scattering (SAXS), and high-resolution transmission electron microscopy. The number of precision macromolecules per nanoparticle was determined after fluorescent labeling by UV spectroscopy and also by quantitative 1H NMR spectroscopy. Each nanoparticle carried between 40 and 100 OAA ligands, depending on the number of cysteine units per OAA. The footprint of each ligand was about 0.074 nm2 per cysteine molecule. OAAs are well suited to stabilize ultrasmall gold nanoparticles by selective surface conjugation and can be used to selectively cover their surface. The presence of the PEG chain considerably increased the hydrodynamic diameter of both dissolved macromolecules and macromolecule-conjugated gold nanoparticles.  相似文献   
996.
Halide and phenyl substituted germaborenes were shown to react with azides at room temperature and transfer a borylene moiety to give iminoboranes. This iminoborane synthesis based on a borylene transfer route was investigated computationally in the case of the phenyl substituted germaborene.  相似文献   
997.
Commercial LiAlH4 can be used in catalytic quantities in the hydrogenation of imines to amines with H2. Combined experimental and theoretical investigations give deeper insight in the mechanism and identifies the most likely catalytic cycle. Activity is lost when Li in LiAlH4 is exchanged for Na or K. Exchanging Al for B or Ga also led to dramatically reduced activities. This indicates a heterobimetallic mechanism in which cooperation between Li and Al is crucial. Potential intermediates on the catalytic pathway have been isolated from reactions of MAlH4 (M=Li, Na, K) and different imines. Depending on the imine, double, triple or quadruple imine insertion has been observed. Prolonged reaction of LiAlH4 with PhC(H)=NtBu led to a side-reaction and gave the double insertion product LiAlH2[N]2 ([N]=N(tBu)CH2Ph) which at higher temperature reacts further by ortho-metallation of the Ph ring. A DFT study led to a number of conclusions. The most likely catalyst for hydrogenation of PhC(H)=NtBu with LiAlH4 is LiAlH2[N]2. Insertion of a third imine via a heterobimetallic transition state has a barrier of +23.2 kcal mol−1H). The rate-determining step is hydrogenolysis of LiAlH[N]3 with H2 with a barrier of +29.2 kcal mol−1. In agreement with experiment, replacing Li for Na (or K) and Al for B (or Ga) led to higher calculated barriers. Also, the AlH4 anion showed very high barriers. Calculations support the experimentally observed effects of the imine substituents at C and N: the lowest barriers are calculated for imines with aryl-substituents at C and alkyl-substituents at N.  相似文献   
998.
A hitherto unexplored class of molecules for molecular force probe applications are expanded porphyrins. This work proves that mechanical force is an effective stimulus to trigger the interconversion between Hückel and Möbius topologies in [28]hexaphyrin, making these expanded porphyrins suitable to act as conformational mechanophores operating at mild (sub-1 nN ) force conditions. A straightforward approach based on distance matrices is proposed for the selection of pulling scenarios that promote either the planar Hückel topology or the three lowest lying Möbius topologies. This approach is supported by quantum mechanochemical calculations. Force distribution analyses reveal that [28]hexaphyrin selectively allocates the external mechanical energy to molecular regions that trigger Hückel–Möbius interconversions, explaining why certain pulling scenarios favor the Hückel two-sided topology and others favor Möbius single-sided topologies. The meso-substitution pattern on [28]hexaphyrin determines whether the energy difference between the different topologies can be overcome by mechanical activation.  相似文献   
999.
Two structural isomers containing five second-row element atoms with 24 valence electrons were generated and identified by matrix-isolation IR spectroscopy and quantum chemical calculations. The OCBNO complex, which is produced by the reaction of boron atoms with mixtures of carbon monoxide and nitric oxide in solid neon, rearranges to the more stable OBNCO isomer on UV excitation. Bonding analysis indicates that the OCBNO complex is best described by the bonding interactions between a triplet-state boron cation with an electron configuration of (2s)0(2pσ)0(2pπ)2 and the CO/NO ligands in the triplet state forming two degenerate electron-sharing π bonds and two ligand-to-boron dative σ bonds.  相似文献   
1000.
NIR and UV exposure of systems comprising upconversion nanoparticles ( UCNP ) based on NaYF4:Tm/Yb@NaYF4, a sensitizer absorbing either in the blue or UV region, and an onium salt with weak coordinating anion resulted in formation of conjugate acid (con-H+). That was namely Ivocerin (di(4-methoxybenzoyl)diethylgermane), ITX (2-iso-propyl thioxanthone), anthracene, pyrene, rubrene, camphore quinone, and a strong fluorescent coumarin (1,1,6,6,8-pentamethyl-2,3,5,6-tetrahyhdro-1H,4H-11-oxa-3a-aza-benzo[de]anthracene-10-one). Quantification occurred by treatment with Rhodamine B lactone whose color switched to intensive red after photolytic formation of con-H+. Exposure with a NIR laser at 980 nm resulted in less con-H+ compared to 395 nm where all sensitizers absorb radiation. UCNP did not mainly interfered formation of con-H+. The different rates obtained in both experiments responsibly explain the failure and success to initiate polymerization of epoxides applying ether 980 nm or 395 nm excitation, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号