首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32811篇
  免费   806篇
  国内免费   169篇
化学   16630篇
晶体学   433篇
力学   1351篇
综合类   5篇
数学   5010篇
物理学   10357篇
  2023年   166篇
  2022年   382篇
  2021年   525篇
  2020年   416篇
  2019年   403篇
  2018年   873篇
  2017年   636篇
  2016年   833篇
  2015年   643篇
  2014年   818篇
  2013年   1667篇
  2012年   1867篇
  2011年   2201篇
  2010年   1527篇
  2009年   1477篇
  2008年   1862篇
  2007年   1846篇
  2006年   1794篇
  2005年   1548篇
  2004年   1282篇
  2003年   1084篇
  2002年   984篇
  2001年   1197篇
  2000年   939篇
  1999年   711篇
  1998年   499篇
  1997年   518篇
  1996年   456篇
  1995年   356篇
  1994年   356篇
  1993年   295篇
  1992年   304篇
  1991年   272篇
  1990年   270篇
  1989年   225篇
  1988年   180篇
  1987年   171篇
  1986年   152篇
  1985年   175篇
  1984年   181篇
  1983年   131篇
  1982年   132篇
  1981年   129篇
  1980年   102篇
  1979年   73篇
  1978年   96篇
  1977年   84篇
  1976年   99篇
  1975年   82篇
  1973年   62篇
排序方式: 共有10000条查询结果,搜索用时 220 毫秒
991.
New synthetic polymeric chiral selectors were developed recently as chiral stationary phases. They were tested with supercritical fluid mobile phases made of CO2 plus an alcohol modifier and 0.2% v/v trifluoroacetic acid. The polymeric N,N′-(1S,2S)-1,2-cyclohexanediyl-bis-2-propenamide (P-CAP), the polymeric N,N′-[(1R,2R)]-1,2-diphenyl-1,2-ethanediyl] bis-2-propenamide (P-CAP-DP), the polymeric trans-9,10-dihydro-9,10-ethanoanthracene-(11S,12S)-11,12-dicarboxylic acid bis-4-vinylphenylamide (DEABV) and the polymeric N,N′-[(1R,2R)-1,2-diphenyl-1,2-ethanediyl] bis-4-vinylbenzamide (DPEVB) were bonded to 5 μm silica particles and used to prepare four columns that were tested with a set of 88 chiral compounds with a wide variety of chemical functionalities. All 88 test compounds were separated on one or more of these “related” polymeric CSPs. Forty-three enantiomeric pairs were separated in SFC conditions by only one of the CSPs. Twenty pairs were separated by two CSPs and 18 and 7 enantiomeric pairs were separated by 3 and all 4 CSPs, respectively. The three P-CAP, P-CAP-DP and DEABV CSPs have equivalent success being able to separate 49 enantiomeric pairs of the studied set with respectively 12, 14 and 20 at baseline (R s  > 1.5). The DPEVB CSP was significantly less efficient separating only 18 chiral compounds with only one at baseline. The great advantage of the SFC mobile phases is the rapid separation, witch most achieved in less than 5 min.  相似文献   
992.
Hydrogen adsorption on functionalized nanoporous activated carbons   总被引:2,自引:0,他引:2  
There is considerable interest in hydrogen adsorption on carbon nanotubes and porous carbons as a method of storage for transport and related energy applications. This investigation has involved a systematic investigation of the role of functional groups and porous structure characteristics in determining the hydrogen adsorption characteristics of porous carbons. Suites of carbons were prepared with a wide range of nitrogen and oxygen contents and types of functional groups to investigate their effect on hydrogen adsorption. The porous structures of the carbons were characterized by nitrogen (77 K) and carbon dioxide (273 K) adsorption methods. Hydrogen adsorption isotherms were studied at 77 K and pressure up to 100 kPa. All the isotherms were Type I in the IUPAC classification scheme. Hydrogen isobars indicated that the adsorption of hydrogen is very temperature dependent with little or no hydrogen adsorption above 195 K. The isosteric enthalpies of adsorption at zero surface coverage were obtained using a virial equation, while the values at various surface coverages were obtained from the van't Hoff isochore. The values were in the range 3.9-5.2 kJ mol(-1) for the carbons studied. The thermodynamics of the adsorption process are discussed in relation to temperature limitations for hydrogen storage applications. The maximum amounts of hydrogen adsorbed correlated with the micropore volume obtained from extrapolation of the Dubinin-Radushkevich equation for carbon dioxide adsorption. Functional groups have a small detrimental effect on hydrogen adsorption, and this is related to decreased adsorbate-adsorbent and increased adsorbate-adsorbate interactions.  相似文献   
993.
Debaryomyces hansenii is a polyol overproducing yeast that can have a potential use for upgrading lignocellulosic hydrolysates. Therefore, the establishment of its tolerance to metabolic inhibitors found in hydrolysates is of major interest. We studied the effects of selected aliphatic acids, phenolic compounds, and furfural. Acetic acid favored biomass production for concentrations <6.0 g/L. Formic acid was more toxic than acetic acid and induced xylitol accumulation (maximum yield of 0.21 g/g of xylose). All tested phenolics strongly decreased the specific growth rate. Increased toxicity was found for hydroquinone, syringaldehyde, and 4-methylcatechol and was correlated to the compound’s hydrophobicity. Increasing the amount of furfural led to longer lag phases and had a detrimental effect on specific growth rate and biomass productivity.  相似文献   
994.
The selective determination of trimethylamine (TMA) in air by liquid chromatography is reported. Sampling is effected by flushing air through C18-packed solid-phase extraction (SPE) cartridges at a flow rate of 15 mL/min for 15 min. Next, TMA is desorbed from the cartridges and injected into the chromatographic system. The analyte is then selectively retained on a precolumn (20 mm x 2.1 mm i.d., packed with 30 microm, Hypersil C18 phase), and derivatized on-line by injecting 9-fluorenylmethyl chloroformate (FMOC). Finally, the TMA-FMOC derivative is transferred to the analytical column (125 mm x 4 mm i.d., LiChrospher 100 RP18, 5 microm), and monitored at 262 nm. The method was applied to the measurement of TMA in air in the 0.25-2.5 microg interval (equivalent to concentrations of TMA of 1.1-11 mg/m3), providing good linearity, reproducibility and accuracy. The mean recovery of TMA was (96 +/- 7%) (n = 12), and the limit of detection was 0.05 microg. The proposed procedure allows the selective determination of TMA in the presence of other primary and secondary short-chain aliphatic amines.  相似文献   
995.
996.
The reaction in water of the N-benzyliminodiacetate-copper(II) chelate ([Cu(NBzIDA)]) and the adenine:thymine base pair complex (AdeH:ThyH) with a Cu/NBzIDA/AdeH/ThyH molar ratio of 2:2:1:1 yields [Cu(2)(NBzIDA)(2)(H(2)O)(2)(mu-N7,N9-Ade(N3)H)].3H(2)O and free ThyH. The compound has been studied by thermal, spectral, and X-ray diffraction methods. In the asymmetric dinuclear complex units both Cu(II) atoms exhibit a square pyramidal coordination, where the four closest donors are supplied by NBzIDA in a mer-tridentate conformation and the N7 or N9 donors of AdeH, which is protonated at N3. The mu-N7,N9 bridge represents a new coordination mode for nonsubstituted AdeH, except for some adeninate(1-)-[methylmercury(II)] derivatives studied earlier. The dinuclear complex is stabilized by the Cu-N7 and Cu-N9 bonds and N6-H(exocyclic)...O(carboxyl) and N3-H(heterocyclic)...O(carboxyl) interligand interactions, respectively. The structure of the new compound differs from that of the mononuclear compound [Cu(NBzIDA)(Ade(N9)H)(H(2)O)].H(2)O, in which the unusual Cu-N3(AdeH) bond is stabilized by a N9-H...O(carboxyl) interligand interaction and where alternating benzyl-AdeH intermolecular pi,pi-stacking interactions produce infinite stacked chains. The possibility for ThyH to be involved in the molecular recognition between [Cu(NBzIDA)] and the AdeH:ThyH base pair is proposed.  相似文献   
997.
Summary The interaction of non-anhydrous solutions of the ligand 1,3-bis-(2-hydroxyphenyl)-1,3-propanedione (bhppH3) with hydrated rare earth chlorides resulted in the formation of anhydrous, non-solvated, complexes M(bhppH2)3 (M=Y, La, Nd, Pr, Sm or Yb). The complexes have been characterized by elemental analysis, t.g., i.r. and1H n.m.r. spectroscopy. The evidence suggests that the coordination is through the -diketone site.  相似文献   
998.
999.
During the last decade several peptides have been extensively studied for their ability to translocate across the plasma membrane. These peptides have been called "cell penetrating peptides" (CPP) or "protein transduction domains" (PTD). These peptides also promote the cellular uptake of various cargo molecules. Their mechanism of cellular entry appeared very intriguing since most publications in the field highlighted an energy-independent process. Indeed, cellular uptake of these peptides was still observed by fluorescence microscopy at low temperature or in the presence of several drugs known to inhibit active transport. In addition, internalization was reported to be much faster than known endocytic processes. However the involvement of a specific cellular component responsible for this uptake process appeared unlikely following intensive structure activity relationship studies using a wide panel of Tat analogues. Several reports about a possible artefactual redistribution of CPPs, and their associated cargos, during the cell fixation step commonly used for fluorescence microscopy have recently emerged in the literature. Moreover strong ionic interactions of CPPs with the cell surface also led to an overestimation of the recorded cell-associated fluorescent signal. It now seems well established that arginine-rich peptides are internalized by an energy dependent process involving endocytosis. Whatever the case, however, an increasing number of data indicate that the conjugation of non-permeant molecules to these CPPs allows their cellular uptake and leads to the expected biological responses, thus pointing to the interest of this delivery strategy. However, initial structure activity relationship studies of these CPPs will have to be reconsidered and the relative potency of each peptide (and their analogues) to vectorize the cargos to their most appropriate subcellular compartment will require careful re-evaluation.  相似文献   
1000.
The manganese carbonyl complex [MnBr(CO)3 L ] ( 1 ), where L = Ph2POCH2CH2OPPh2, was prepared by reacting [MnBr(CO)5] with the bidentate ligand 1, 2‐Bis(diphenylphosphinite)ethane. From this compound and the appropriate phosphite, phosphinite or phosphonite ligands were synthesized the complexes [MnBr(CO)2 LL ′], where L ′ = P(OMe)3 ( 2 ) or P(OEt)3 ( 3 ) and [MnBr(CO)3 L ′2], where L ′ =PPh(OEt)2 ( 4 ) or PPh2(OEt) ( 5 ). The obtained compounds have been characterized by elemental analysis, mass spectrometry, IR and NMR (1H, 13C and 31P) spectroscopies and X‐ray diffractometry for the complexes 1 , 4 and 5 .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号