首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   0篇
化学   60篇
晶体学   1篇
力学   3篇
数学   1篇
物理学   9篇
  2021年   1篇
  2017年   2篇
  2015年   1篇
  2014年   7篇
  2013年   6篇
  2012年   3篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   4篇
  2007年   6篇
  2006年   5篇
  2005年   5篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1988年   1篇
  1984年   2篇
  1983年   3篇
  1979年   1篇
  1968年   2篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
11.
Syntheses and Chemical Properties of New Bridged Quinone Derivatives. Coupling Reactions of Aryldiazonium Salts with 2-Methoxy-1,6-methano[10]annulene Coupling of 2-methoxy-1,6-methano[10]annulene (3) with the aryldiazonium salts 4a-4i yields the quinone hydrazones 5a-5i. The spectroscopic properties of these products are described. The reaction of 3 with 4-nitrophenyldiazonium tetrafluoroborate buffered with sodium acetate in dry methanol yielded after chromatographic separation the azo derivative 7 on the one hand and a mixture of the valence tautomers 8a and 8b on the other.  相似文献   
12.
A novel evaporative cell is used to measure steady-state gradient-driven diffusion rates of water through hydrogel membranes in the absence of external mass-transfer resistance. In this cell, the bottom surface of a hydrogel membrane is exposed to pure water vapor at known activity (aw) less than unity, while a sealed liquid-water reservoir bathes the upper membrane surface. Induced by the chemical-potential gradient between the two surfaces, the water evaporation rate is monitored by the rate of weight loss of the water reservoir.Results at ambient temperature are compared with those from measured water flux through soft-contact-lens (SCL) materials and with other published experimental results. Concentration-dependent water diffusivities are obtained by interpreting measured water fluxes for 0.11 ≤ aw ≤ 0.93 with extended Maxwell–Stefan (EMS) diffusion theory. Thermodynamic non-ideality is taken into account through Flory–Rehner polymer–solution theory. Shrinking/swelling is modeled by conservation of the total polymer mass assuming volume additivity. In spite of correction for thermodynamic non-ideality, EMS–water-diffusion coefficients increase with the water volume fraction, especially strongly for those hydrogel materials with low liquid-saturated water contents. The evaporation cell described here provides a simple robust method to establish water transport rates through soft-contact-lenses and other hydrogel membranes without the need to correct for external mass-transfer resistance.  相似文献   
13.
The oscillating drop/bubble technique is increasingly popular for measuring the interfacial dilatational properties of surfactant/polymer-laden fluid/fluid interfaces. A caveat of this technique, however, is that viscous forces are important at higher oscillation frequencies or fluid viscosities; these can affect determination of the interfacial tension. Here, we experimentally quantify the effect of viscous forces on the interfacial-tension measurement by oscillating 100 and 200 cSt poly(dimethylsiloxane) (PDMS) droplets in water at small amplitudes and frequencies ranging between 0.01 and 1 Hz. Due to viscous forces, the measured interfacial tension oscillates sinusoidally with the same frequency as the oscillation of the drop volume. The tension oscillation precedes that of the drop volume, and the amplitude varies linearly with Capillary number, Ca=DeltamuomegaDeltaV/gammaa(2), where Deltamu=mu(D)-mu is the difference between the bulk Newtonian viscosities of the drop and surrounding continuous fluid, omega is the oscillation frequency of the drop, DeltaV is the amplitude of volume oscillation, gamma is the equilibrium interfacial tension between the PDMS drop and water, and a is the radius of the capillary. A simplified model of a freely suspended spherical oscillating-drop well explains these observations. Viscous forces distort the drop shape at Ca>0.002, although this criterion is apparatus dependent.  相似文献   
14.
Simulations of the distribution coefficients of linear and star‐shaped polymers in spherical pores were performed in order to predict the GPC‐elution behavior of star‐shaped polymers relative to that of linear polymers. Self avoiding walks were generated on a tetrahedral lattice to simulate good solvent conditions. It was found that neither the molecular weight nor the mean squared radius of gyration of the polymer serves as a universal factor to determine the distribution coefficient. However, the calculated distribution coefficients correlate well with the calculated hydrodynamic radii even for different topologies. For molecules at same elution volume the ratios of molecular weights of star and linear polymer agree well with exact calculations for Gaussian chains. These ratios are nearly independent of pore geometry (spherical or cylindrical).  相似文献   
15.
16.
17.
Yutkin  M. P.  Radke  C. J.  Patzek  T. W. 《Transport in Porous Media》2021,136(2):411-429

Higher oil recovery after waterflood in carbonate reservoirs is attributed to increasing water wettability of the rock that in turn relies on complicated surface chemistry. In addition, calcite mineral reacts with aqueous solutions and can alter substantially the composition of injected water by mineral dissolution. Carefully designed chemical and/or brine flood compositions in the laboratory may not remain intact while the injected solutions pass through the reactive reservoir rock. This is especially true for a low-salinity waterflood process, where some finely tuned brine compositions can improve flood performances, whereas others cannot. We present a 1D reactive transport numerical model that captures the changes in injected compositions during water flow through porous carbonate rock. We include highly coupled bulk aqueous and surface carbonate-reaction chemistry, detailed reaction and mass transfer kinetics, 2:1 calcium ion exchange, and axial dispersion. At typical calcite reaction rates, local equilibrium is established immediately upon injection. In SI, we validate the reactive transport model against analytic solutions for rock dissolution, ion exchange, and longitudinal dispersion, each considered separately. Accordingly, using an open-source algorithm (Charlton and Parkhurst in Comput Geosci 37(10):1653–1663, 2011. https://doi.org/10.1016/j.cageo.2011.02.005), we outline a design tool to specify chemical/brine flooding formulations that correct for composition alteration by the carbonate rock. Subsequent works compare proposed theory against experiments on core plugs of Indiana limestone and give examples of how injected salinity compositions deviate from those designed in the laboratory for water-wettability improvement.

  相似文献   
18.
19.
Dynamics of adsorption and desorption of a diblock copolymer to an interface between two homopolymers was measured using dynamic secondary-ion mass spectrometry (SIMS). Thin films were constructed consisting of a layer of saturated polybutadiene with 90% 1,2-addition (sPB90), followed by a layer of saturated polybutadiene with 63% 1,2-addition (sPB63), and finally by another layer of the sPB90 homopolymer. A sPB90-sPB63 diblock copolymer was initially included only in the top sPB90 layer of the film at a volume fraction of 0.05. The thin films were annealed at ambient temperature for times ranging between 0.2 and 108 h, and the concentration profiles of the diblock copolymer through the films were measured using SIMS. The dynamics of adsorption and desorption of the diblock copolymer at the two sPB90-sPB63 interfaces was gauged by comparing the different transient concentration profiles. The sorption process was modeled as diffusion in an external field, generated from self-consistent field theory (SCFT). All parameters for the model were determined independently. Although the model neglects the dynamics of conformational change, experimental results matched theory very well.  相似文献   
20.
We develop a unique film holder combining a thin-film balance with AC impedance spectroscopy to measure disjoining pressure, film conductance, and film thickness simultaneously. Foam films stabilized by sodium dodecyl sulfate (SDS) are investigated with and without added sodium chloride (NaCl) electrolyte. Classical colloidal theory, Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory, is tested rigorously over a wide range of solution conditions by comparing the surface charge densities fit to disjoining-pressure isotherms with those estimated independently from film-conductance and surface-tension data. Film-conductance measurements strongly suggest that the adsorbed anionic surfactant is partially complexed with counterions. Therefore, to reconcile the different values of charge densities calculated from surface tension and film conductance with those from disjoining pressure, we propose a simple ion-binding electrostatic model. The ion-complexation framework predicts increased ion complexing with increasing solution ionic strength, in agreement with surface-tension and film-conductance data. Unfortunately, it is not possible to describe similarly the trends of the measured disjoining-pressure isotherms because the diffuse-layer charge density increases, or equivalently, the ion complexation decreases with increasing ionic strength. Accordingly, the ion-binding extension of classical DLVO theory does not permit agreement between theory and independent experimental data from surface tension, disjoining pressure, and film conductance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号