首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   402篇
  免费   42篇
化学   345篇
晶体学   5篇
力学   12篇
数学   44篇
物理学   38篇
  2023年   5篇
  2022年   16篇
  2021年   7篇
  2020年   16篇
  2019年   16篇
  2018年   11篇
  2017年   12篇
  2016年   40篇
  2015年   19篇
  2014年   25篇
  2013年   31篇
  2012年   30篇
  2011年   49篇
  2010年   13篇
  2009年   17篇
  2008年   26篇
  2007年   19篇
  2006年   14篇
  2005年   11篇
  2004年   13篇
  2003年   6篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   7篇
  1995年   5篇
  1993年   2篇
  1988年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1973年   1篇
  1966年   1篇
  1959年   3篇
  1958年   2篇
  1957年   1篇
  1946年   1篇
  1945年   1篇
  1913年   1篇
  1910年   1篇
  1909年   1篇
排序方式: 共有444条查询结果,搜索用时 265 毫秒
131.
The relative thermal stability of copolymers of 2-hydroxyethyl methacrylate-ethyl methacrylate (HEMA-EMA) and HEMA-n-butyl methacrylate (HEMA-BMA) was investigated by thermogravimetry in an air/nitrogen atmosphere. The effect of molecular weight on thermal degradation was evaluated by taking five fractions of HEMA-EMA and four of HEMA-BMA copolymers. The enthalpic changes associated with the endothermic transition were evaluated by differential scanning calorimetry. The structural changes taking place in these copolymers during thermal degradation in air at 200°C were investigated by IR.  相似文献   
132.
The six-membered saturated heterocycles—4-tert-butyl-1-methylpiperidine, 4-tert-butyl-1-methylphosphine, 4-tert-butyl-tetrahydro-2H-thiopyran, and 4-tert-butyl-tetrahydro-2H-selenopyran—were prepared as suitable model compounds with well-defined geometry for an NMR study of their oxidation products. The corresponding epimeric N-oxides, phosphinoxides, sulfoxides, and selenoxides were obtained by standard chemical preparation and also by in situ oxidation with meta-chloroperbenzoic acid directly in the NMR tube. The experimental 1H and 13C chemical shifts were compared with corresponding calculated data obtained by GIAO approach with DFT, MP2, and HF methods and various basis sets. The correlation of experimental versus calculated data showed the possibility to determine the stereochemistry of the epimeric oxidation products using fast DFT B3LYP/6-31G* method for both geometry optimization and NMR chemical shifts calculation.  相似文献   
133.
Metabolic engineering is an important area of research that involves editing genetic networks to overproduce a certain substance by the cells. Using a combination of genetic, metabolic, and modeling methods, useful substances have been synthesized in the past at industrial scale and in a cost-effective manner. Currently, metabolic engineering is being used to produce sufficient, economical, and eco-friendly biofuels. In the recent past, a number of efforts have been made towards engineering biosynthetic pathways for large scale and efficient production of biofuels from biomass. Given the adoption of metabolic engineering approaches by the biofuel industry, this paper reviews various approaches towards the production and enhancement of renewable biofuels such as ethanol, butanol, isopropanol, hydrogen, and biodiesel. We have also identified specific areas where more work needs to be done in the future.  相似文献   
134.
Recent experimental data on dijet cross sections in diffractive photoproduction at HERA collider are analysed with an emphasis on QCD factorisation breaking effects. The possible sources of the different conclusions of H1 and ZEUS collaborations are studied.  相似文献   
135.
Utilization of metallic nanoparticles in various biotechnological and medical applications represents one of the most extensively investigated areas of the current materials science. These advanced applications require the appropriate chemical functionalization of the nanoparticles with organic molecules or their incorporation in suitable polymer matrices. The intensified interest in polymer nanocomposites with silver nanoparticles is due to the high antimicrobial effect of nanosilver as well as the unique characteristics of polymers which include their excellent structural uniformity, multivalency, high degree of branching, miscellaneous morphologies and architectures, and highly variable chemical composition. In this review, we explore several aspects of antimicrobial polymer silver nanocomposites, giving special focus to the critical analysis of the reported synthetic routes including their advantages, drawbacks, possible improvements, and real applicability in antibacterial and antifungal therapy. A special attention is given to "green" synthetic routes exploiting the biopolymeric matrix and to the methods allowing preparing magnetically controllable antimicrobial polymers for targeting to an active place. The controversial mechanism of the action of silver against bacteria, fungi and yeasts as well as perspectives and new applications of silver polymeric nanocomposites is also briefly discussed.  相似文献   
136.
Tandem anionic oxy‐Cope rearrangement/radical oxygenation reactions provide δ,?‐unsaturated α‐(aminoxy) carbonyl compounds, which serve as convenient precursors to diverse compound classes. Functionalized carbocycles are accessible by very rare all‐carbon 5‐endo‐trig cyclizations, but also common 5‐exo‐trig radical cyclizations, based on the persistent radical effect. The tandem reactions can be further extended by highly diastereoselective allylation or reduction steps to give complex scaffolds.  相似文献   
137.
Spinel oxides with the composition of AIIBIII2O4 (A and B are metal ions) represent an important class of anode material for water splitting to replace the currently used noble-metal catalysts. Although spinel electrocatalysts have widely been investigated for electrochemical water oxidation, the role of octahedral and tetrahedral sites influencing catalytic performance has been a topic of discussion for a long time and still under debate. Lately, this issue has been addressed by substituting redox-inert cation to the tetrahedral sites of cobalt spinels and comparing the electrochemical activity between them. However, rapid surface structural transformation of the catalysts under operating electrochemical conditions makes it difficult to infer the exact contribution of tetrahedral and octahedral sites for water oxidation. Herein, for the first time, we utilize the oxidant-driven water oxidation approach to reveal the responsible active sites using two spinel-type nanostructures, ZnIICo2IIIO4 and CoIICo2IIIO4 (Co3O4), synthesized by using a single-source precursor approach. Strikingly, a superior O2 production rate (0.98 mmolO2 molCo?1 s?1) following first-order reaction kinetics was achieved for ZnCo2O4 in the presence of CeIV as sacrificial electron acceptor compared to Co3O4 spinel (0.29 mmolO2 molCo?1 s?1). The structural and morphological stability of the ZnCo2O4 and Co3O4 post water oxidation catalysis confirms that the catalytic activity is strictly controlled by the geometry and electronic structure of the active site of the spinel structure. The higher performance of ZnCo2O4 over Co3O4 further indicates that the presence of CoII is not essential for catalytic water oxidation. The presence of redox inert ZnII at the tetrahedral site of ZnCo2O4 can facilitate the stabilization of a high-valent CoIV intermediate via oxidation of CoIII (situated at the octahedral site), and this intermediate can be regarded as the active species for water oxidation catalyst along with structural defects caused by surface Zn leaching.  相似文献   
138.
Halogenated sp2 materials are of high interest owing to their important electronic and electrochemical properties. Although methods for graphite and graphene fluorination have been extensively researched, the fundamental electrochemical properties of fluorinated graphite are not well established. In this paper, the electrochemistry of three fluorographite materials of different carbon‐to‐fluorine ratio were studied: (CF0.33)n, (CF0.47)n, and (CF0.75)n. Our findings reveal that the carbon‐to‐fluorine ratio of fluorographite will impact the electrochemical performance. Faster heterogeneous electron‐transfer (HET) rates and lowered oxidation potentials for ascorbic acid and uric acid are progressively obtained with increasing fluorine content. The fluorographite (CF0.75)n was in fact found to exhibit the most improved electrochemical performances with the fastest HET rates and significantly lowered overpotentials in the oxidation of ascorbic acid. Analytical parameters such as sensitivity and linearity were subsequently investigated by applying the fluorographite (CF0.75)n in the analysis of ascorbic acid and uric acid, which can be simultaneously detected. We determined good linear responses towards the detection of both ascorbic and uric acid. Fluorographites outperform graphites in sensing applications, which will have a profound impact on applications of fluorographites and fluorographene in sensing and biosensing.  相似文献   
139.
Currently, bonding analysis of molecules based on the Quantum Theory of Atoms in Molecules (QTAIM) is popular; however, “misinterpretations” of the QTAIM analysis are also very frequent. In this contribution the chemical relevance of the bond path as one of the key topological entities emerging from the QTAIM’s topological analysis of the one‐electron density is reconsidered. The role of nuclear vibrations on the topological analysis is investigated demonstrating that the bond paths are not indicators of chemical bonds. Also, it is argued that the detection of the bond paths is not necessary for the “interaction” to be present between two atoms in a molecule. The conceptual disentanglement of chemical bonds/interactions from the bonds paths, which are alternatively termed “line paths” in this contribution, dismisses many superficial inconsistencies. Such inconsistencies emerge from the presence/absence of the line paths in places of a molecule in which chemical intuition or alternative bonding analysis does not support the presence/absence of a chemical bond. Moreover, computational QTAIM studies have been performed on some “problematic” molecules, which were considered previously by other authors, and the role of nuclear vibrations on presence/absence of the line paths is studied demonstrating that a bonding pattern consistent with other theoretical schemes appears after a careful QTAIM analysis and a new “interpretation” of data is performed.  相似文献   
140.
A cobalt‐mediated [2+2+2] cycloisomerisation of ynedinitriles to helical pyridazines in good to high yields was developed. The construction of the pyridazine nucleus from one alkyne and two nitrile units is proposed to follow either a conventional organometallic mechanism or to be triggered by a single‐electron transfer from a CoII species. Various [5]‐, [6]‐ and [7]helicene pyridazines were prepared.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号