首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1486篇
  免费   53篇
  国内免费   3篇
化学   993篇
晶体学   14篇
力学   60篇
数学   158篇
物理学   317篇
  2023年   4篇
  2022年   16篇
  2021年   22篇
  2020年   16篇
  2019年   23篇
  2018年   17篇
  2017年   23篇
  2016年   37篇
  2015年   33篇
  2014年   42篇
  2013年   88篇
  2012年   92篇
  2011年   70篇
  2010年   52篇
  2009年   45篇
  2008年   111篇
  2007年   89篇
  2006年   85篇
  2005年   82篇
  2004年   72篇
  2003年   64篇
  2002年   68篇
  2001年   45篇
  2000年   45篇
  1999年   25篇
  1998年   35篇
  1997年   20篇
  1996年   25篇
  1995年   10篇
  1994年   17篇
  1993年   10篇
  1992年   21篇
  1991年   8篇
  1990年   20篇
  1989年   10篇
  1988年   8篇
  1987年   10篇
  1986年   6篇
  1985年   11篇
  1984年   4篇
  1983年   9篇
  1982年   7篇
  1981年   4篇
  1980年   5篇
  1979年   3篇
  1978年   7篇
  1977年   4篇
  1975年   4篇
  1973年   3篇
  1972年   4篇
排序方式: 共有1542条查询结果,搜索用时 15 毫秒
51.
A cross-linking method is developed to elucidate glycan-mediated interactions between membrane proteins through sialic acids. The method provides information on previously unknown extensive glycomic interactions on cell membranes. The vast majority of membrane proteins are glycosylated with complicated glycan structures attached to the polypeptide backbone. Glycan–protein interactions are fundamental elements in many cellular events. Although significant advances have been made to identify protein–protein interactions in living cells, only modest advances have been made on glycan–protein interactions. Mechanistic elucidation of glycan–protein interactions has thus far remained elusive. Therefore, we developed a cross-linking mass spectrometry (XL-MS) workflow to directly identify glycan–protein interactions on the cell membrane using liquid chromatography-mass spectrometry (LC-MS). This method involved incorporating azido groups on cell surface glycans through biosynthetic pathways, followed by treatment of cell cultures with a synthesized reagent, N-hydroxysuccinimide (NHS)–cyclooctyne, which allowed the cross-linking of the sialic acid azides on glycans with primary amines on polypeptide backbones. The coupled peptide–glycan–peptide pairs after cross-linking were identified using the latest techniques in glycoproteomic and glycomic analyses and bioinformatics software. With this approach, information on the site of glycosylation, the glycoform, the source protein, and the target protein of the cross-linked pair were obtained. Glycoprotein–protein interactions involving unique glycoforms on the PNT2 cell surface were identified using the optimized and validated method. We built the GPX network of the PNT2 cell line and further investigated the biological roles of different glycan structures within protein complexes. Furthermore, we were able to build glycoprotein–protein complex models for previously unexplored interactions. The method will advance our future understanding of the roles of glycans in protein complexes on the cell surface.

The cell surface glycocalyx is highly interactive defined by extensive covalent and non-covalent interactions. A method for cross-linking and characterizing glycan–peptide interactions in situ is developed.  相似文献   
52.
The complexation of chromium by different flavonoid dyes in micellar media has been studied, in particular the reaction between chromium and quercetin. Micellar effects, the reaction pathway proposed and the application of the method to the determination of Cr(VI) and Cr(VI) + Cr(III) mixtures are discussed.  相似文献   
53.
Using the facilities of the Triga Mark III reactor at the NNRI, Mexico and the HAV-1 multipurpose monitor, the reactor power dependency for thek 0-standardization essential neutron flux parameters as: epithermal shape factor (), thermal to epithermal ratio (f) and neutron temperature (T n ) were experimentally obtained. Evaluation of the obtained dependencies shows that it is unnecessary to analyze the possible introduction of correction factors in thek 0-INAA experimental results. A single experimental procedure to determine throughf is suggested.  相似文献   
54.
55.
By treating Cu(I) complexes of neutral, bidentate N-donor ligands with S8, clusters with novel delocalized mixed-valence [Cu3(mu-S)2]3+ cores have been isolated. X-ray crystal structures and UV-vis and resonance Raman spectral features of these clusters reveal similarities to the tetracopper-sulfide "CuZ" site in nitrous oxide reductase. A delocalized S = 1 ground state for the mixed-valent CuIIICu2II cores is supported by the observation of high symmetry in the X-ray structures and 10-line hyperfine features arising from coupling to three equivalent Cu ions in EPR spectra obtained at room temperature (shown) and 10 K. The delocalization we observe contrasts with the localization reported previously for a [Cu3(mu-O)2]3+ analogue (Root, D. E.; Henson, M. J.; Machonkin, T.; Mukherjee, P.; Stack, T. D. P.; Solomon, E. I. J. Am. Chem. Soc. 1998, 120, 4982), which we rationalized through DFT calculations.  相似文献   
56.
The IR (gas) and Raman (liquid) spectra of FC(O)NSCl(2) demonstrate the presence of a conformational mixture in both phases. According to a gas electron diffraction study, the main conformer (94(8)%) possesses a syn-syn structure (C(O)F group synperiplanar with respect to the SCl(2) bisector and the C=O bond synperiplanar to the N=S bond). Quantum chemical calculations (HF, B3LYP and MP2 with 6-31G basis set, and MP2/6-311(2df)) predict a syn-anti structure for the second conformer. Analysis of the IR (gas) spectrum results in a contribution of 5(1)% of the minor form, corresponding to a Gibbs free energy difference DeltaG degrees = G degrees (syn-anti) - G degrees (syn-syn) = 1.75(15) kcal/mol. This value is reproduced very well by quantum chemical calculations, which include electron correlation effects (DeltaG degrees = 1.28-1.56 kcal/mol). The HF approximation overestimates this energy difference (DeltaG degrees = 3.24 kcal/mol).  相似文献   
57.
Molecular distillation was studied for the separation of tocopherols from soya sludge, both experimentally and by simulation, under different operating conditions, with good agreement. Evaporator temperatures varied from 100°C to 160°C and feed flow rates ranged from 0.1 to 0.8 kg/h. The process pressure was maintained at 10−6 bar, the feed temperature at 50°C, the condenser temperature at 60°C, and the stirring at 350 rpm. For each process condition, samples of both streams (distillate and residue) were collected and stored at −18°C before tocopherols analyses. Owing to the differences between molecular weights and vapor pressures of free fatty acids and tocopherols, tocopherols preferentially remained in the residue at evaporator temperatures of 100°C and 120°C, whereas for higher temperatures (140°C and 160°C) and lower feed flow rate, tocopherols tended to migrate to the distillate stream.  相似文献   
58.
The new hydride complexes [Mo2Cp2(mu-H)(mu-PHR)(CO)4] having bulky substituents (R = 2,4,6-C(6)H2tBu3= Mes*, R = 2,4,6-C6H2Me3= Mes) have been prepared in good yield by addition of Li[PHR] to the triply bonded [Mo2Cp2(CO)4] and further protonation of the resulting anionic phosphide complex [Mo2Cp2(mu-PHR)(CO)4]-. Protonation of the Mes* compound with either [H(OEt2)2][B{3,5-C6H3(CF3)2}4] or HBF4.OEt2 gives the cationic phosphinidene complex [Mo2Cp2(mu-H)(mu-PMes*)(CO)4]+ in high yield. In contrast, protonation of the analogous hydride compounds with Mes or Cy substituents on phosphorus give the corresponding unsaturated tetracarbonyls [Mo2Cp2(mu-PHR)(CO)4]+, which are unstable at room temperature and display a cis geometry. Decomposition of the latter give the electron-precise pentacarbonyls [Mo2Cp2(mu-PHR)(mu-CO)(CO)4]+, also displaying a cis arrangement of the metal fragments. In the presence of BF4- as external anion, fluoride abstraction competes with carbonylation to yield the neutral fluorophosphide hydrides [Mo2Cp2(mu-H)(mu-PFR)(CO)4]. Similar results were obtained in the protonation reactions of the hydride compounds having a Ph substituent on phosphorus. In that case, using HCl as protonation reagent gave the chloro-complex [Mo2ClCp2(mu-PHPh)(CO)4] in good yield. The structures and dynamic behaviour of the new compounds are analyzed on the basis of solution IR and 1H, 31P, 19F and 13C NMR data as well as the X-ray studies carried out on [Mo2Cp2(mu-H)(mu-PHMes)(CO)4](cis isomer), [Mo2Cp2(mu-H)(mu-PFMes)(CO)4](trans isomer), [Mo2Cp2(mu-PHCy)(mu-CO)(CO)4](BF4) and [Mo2ClCp2(mu-PHPh)(CO)4].  相似文献   
59.
The condensation of substituted α-keto alkynes with p-nitrobenzaldehyde in the presence of lithium diisopropylamide (LDA) affords highly substituted 5,6-dihydro-4H-oxocin-4-ones in good yields. Surprisingly, no six-membered carbocycles were formed in this 8-endo-dig cyclization to the oxocinone system.  相似文献   
60.
The nature of intermolecular interactions between dicoordinate Cu(I) ions is analyzed by means of combined theoretical and structural database studies. Energetically stable Cu(I).Cu(I) interactions are only found when the two monomers involved in the interaction are neutral or carry opposite charges, thus allowing us to speak of bonding between the components of the bimolecular aggregate. A perturbative evaluation of the components of the intermolecular interaction energies, by means the IMPT scheme of Stone, indicates that both the Coulombic and dispersion forces are important in determining the Cu(I).Cu(I) bonding interactions, because only a small part of that energy is attributable to Cu.Cu interactions, while a large component results from Cu.ligand interactions. The electrostatic component is the dominant one by far in the interaction between charged monomers, while in the interaction between neutral complexes, the electrostatic component is found to be of the same order of magnitude as the dispersion term. Bimolecular aggregates that have like charges are repulsive by themselves, and their presence in the solid state results from anion.cation interactions with ions external to this aggregate. In these cases, the short-contact Cu.Cu interactions here should be more properly called counterion-mediated Cu.Cu bonds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号