首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1073篇
  免费   50篇
  国内免费   2篇
化学   903篇
晶体学   23篇
力学   8篇
数学   87篇
物理学   104篇
  2023年   14篇
  2022年   11篇
  2021年   24篇
  2020年   27篇
  2019年   27篇
  2018年   15篇
  2017年   11篇
  2016年   40篇
  2015年   30篇
  2014年   35篇
  2013年   53篇
  2012年   105篇
  2011年   102篇
  2010年   50篇
  2009年   34篇
  2008年   72篇
  2007年   78篇
  2006年   79篇
  2005年   67篇
  2004年   81篇
  2003年   44篇
  2002年   30篇
  2001年   12篇
  2000年   8篇
  1999年   8篇
  1998年   4篇
  1997年   5篇
  1996年   10篇
  1995年   5篇
  1994年   8篇
  1993年   10篇
  1992年   2篇
  1990年   4篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1959年   1篇
  1916年   1篇
排序方式: 共有1125条查询结果,搜索用时 484 毫秒
101.
Native mass spectrometry (MS) with electrospray ionization (ESI) has evolved as an invaluable tool for the characterization of intact native proteins and non-covalently bound protein complexes. Here we report the structural characterization by high resolution native top-down MS of human thrombin and its complex with the Bock thrombin binding aptamer (TBA), a 15-nucleotide DNA with high specificity and affinity for thrombin. Accurate mass measurements revealed that the predominant form of native human α-thrombin contains a glycosylation mass of 2205 Da, corresponding to a sialylated symmetric biantennary oligosaccharide structure without fucosylation. Native MS showed that thrombin and TBA predominantly form a 1:1 complex under near physiological conditions (pH 6.8, 200 mM NH4OAc), but the binding stoichiometry is influenced by the solution ionic strength. In 20 mM ammonium acetate solution, up to two TBAs were bound to thrombin, whereas increasing the solution ionic strength destabilized the thrombin–TBA complex and 1 M NH4OAc nearly completely dissociated the complex. This observation is consistent with the mediation of thrombin-aptamer binding through electrostatic interactions and it is further consistent with the human thrombin structure that contains two anion binding sites on the surface. Electron capture dissociation (ECD) top-down MS of the thrombin–TBA complex performed with a high resolution 15 Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer showed the primary binding site to be at exosite I located near the N-terminal sequence of the heavy chain, consistent with crystallographic data. High resolution native top-down MS is complementary to traditional structural biology methods for structurally characterizing native proteins and protein–DNA complexes.
Graphical Abstract ?
  相似文献   
102.

Background

Protein tyrosine phosphatases (PTPs) like dual specificity phosphatase 5 (DUSP5) and protein tyrosine phosphatase 1B (PTP1B) are drug targets for diseases that include cancer, diabetes, and vascular disorders such as hemangiomas. The PTPs are also known to be notoriously difficult targets for designing inihibitors that become viable drug leads. Therefore, the pipeline for approved drugs in this class is minimal. Furthermore, drug screening for targets like PTPs often produce false positive and false negative results.

Results

Studies presented herein provide important insights into: (a) how to detect such artifacts, (b) the importance of compound re-synthesis and verification, and (c) how in situ chemical reactivity of compounds, when diagnosed and characterized, can actually lead to serendipitous discovery of valuable new lead molecules. Initial docking of compounds from the National Cancer Institute (NCI), followed by experimental testing in enzyme inhibition assays, identified an inhibitor of DUSP5. Subsequent control experiments revealed that this compound demonstrated time-dependent inhibition, and also a time-dependent change in color of the inhibitor that correlated with potency of inhibition. In addition, the compound activity varied depending on vendor source. We hypothesized, and then confirmed by synthesis of the compound, that the actual inhibitor of DUSP5 was a dimeric form of the original inhibitor compound, formed upon exposure to light and oxygen. This compound has an IC50 of 36 μM for DUSP5, and is a competitive inhibitor. Testing against PTP1B, for selectivity, demonstrated the dimeric compound was actually a more potent inhibitor of PTP1B, with an IC50 of 2.1 μM. The compound, an azo-bridged dimer of sulfonated naphthol rings, resembles previously reported PTP inhibitors, but with 18-fold selectivity for PTP1B versus DUSP5.

Conclusion

We report the identification of a potent PTP1B inhibitor that was initially identified in a screen for DUSP5, implying common mechanism of inhibitory action for these scaffolds.
  相似文献   
103.
To acquire fertilization competence, spermatozoa must undergo several biochemical and motility changes in the female reproductive tract, collectively called capacitation. Actin polymerization and the development of hyperactivated motility (HAM) are part of the capacitation process. In a recent study, we showed that irradiation of human sperm with visible light stimulates HAM through a mechanism involving reactive‐oxygen‐species (ROS), Ca2+ influx, protein kinases A (PKA), and sarcoma protein kinase (Src). Here, we showed that this effect of light on HAM is mediated by ROS‐dependent activation of the epidermal growth factor receptor (EGFR). Interestingly, ROS‐mediated HAM even when the EGFR was activated by EGF, the physiological ligand of EGFR. Light irradiation stimulated ROS‐dependent actin polymerization, and this effect was abrogated by PBP10, a peptide which activates the actin‐severing protein, gelsolin, and causes actin‐depolymerization in human sperm. Light‐stimulated tyrosine phosphorylation of Src‐dependent gelsolin, resulting in enhanced HAM. Thus, light irradiation stimulates HAM through a mechanism involving Src‐mediated actin polymerization. Light‐stimulated HAM and in vitro‐fertilization (IVF) rate in mouse sperm, and these effects were mediated by ROS and EGFR. In conclusion, we show here that irradiation of sperm with visible light, enhances their fertilization capacity via a mechanism requiring ROS, EGFR and HAM.  相似文献   
104.
Coating hydrogel films or microspheres by an adsorbed colloidal shell is one synthesis method for forming colloidosomes. The colloidal shell allows control of the release rate of encapsulated materials, as well as selective transport. Previous studies found that the packing density of self-assembled, adsorbed colloidal monolayers is independent of the colloidal particle size. In this paper we develop an equilibrium model that correlates the packing density of charged colloidal particles in an adsorbed shell to the particle dimensions in monodisperse and bidisperse systems. In systems where the molar concentration in solution is fixed, the increase in adsorption energy with increasing particle size leads to a monotonic increase in the monolayer packing density with particle radius. However, in systems where the mass fraction of the particles in the adsorbing solutions is fixed, increasing particle size also reduces the molar concentration of particles in solution, thereby reducing the probability of adsorption. The result is a nonmonotonic dependence of the packing density in the adsorbed layer on the particle radius. In bidisperse monolayers composed of two particle sizes, the packing density in the layer increases significantly with size asymmetry. These results may be utilized to design the properties of colloidal shells and coatings to achieve specific properties such as transport rate and selectivity.  相似文献   
105.
We have prepared a range of well-defined copolymers of styrene and L-proline functionalized styrene (5-11 kDa) using reversible addition-fragmentation chain transfer (RAFT) polymerization techniques and explored their use in supported catalysis. Upon deprotection of the L-proline functionalities, the solution self-assembly of these copolymers was investigated in mixed solvent systems. The resulting assemblies were characterized by dynamic light scattering, transmission electron microscopy (on graphene oxide substrates, along with cryo-TEM and tomography), and scanning electron microscopy. The application of these functional assemblies as supported catalysts for the aldol condensation reaction was explored using cyclohexanone and 4-nitrobenzaldehyde. The rate and selectivity of solution catalysis in our self-assembled system were comparable to those of L-proline, and a significant advantage of our system was that the polymer support could be utilized at lower catalyst loadings with comparable activity and also could be recycled a number of times while maintaining activity and selectivity.  相似文献   
106.
Through employment of deuterium-labeled substrates, the triflic acid catalyzed intramolecular exo addition of the X-H(D) (X=N, O) bond of a sulfonamide, alcohol, or carboxylic acid across the C=C bond of a pendant cyclohexene moiety was found to occur, in each case, with exclusive formation (≥90%) of the anti-addition product without loss or scrambling of deuterium as determined by (1)H and (2)H NMR spectroscopy and mass spectrometry analysis. Kinetic analysis of the triflic-acid-catalyzed intramolecular hydroamination of N-(2-cyclohex-2'-enyl-2,2-diphenylethyl)-p-toluenesulfonamide (1a) established the second-order rate law: rate=k(2)[HOTf][1a] and the activation parameters ΔH(++)=(9.7±0.5) kcal mol(-1) and ΔS(++)=(-35±5) cal K(-1) mol(-1). An inverse α-secondary kinetic isotope effect of k(D)/k(H) =(1.15±0.03) was observed upon deuteration of the C2' position of 1a, consistent with partial C-N bond formation in the highest energy transition state of catalytic hydroamination. The results of these studies were consistent with a mechanism for the intramolecular hydroamination of 1a involving concerted, intermolecular proton transfer from an N-protonated sulfonamide to the alkenyl C3' position of 1a coupled with intramolecular anti addition of the pendant sulfonamide nitrogen atom to the alkenyl C2' position.  相似文献   
107.
Three peri-substituted trisulfide-2-oxides are prepared by treatment of 1,8-naphthalene dithiols with thionyl chloride and pyridine. The 1,2,3-trithiane-2-oxide ring adopts a sofa conformation in the solid state, with a pseudoaxial oxygen and evidence of ring strain (peri-interaction). Heating the trisulfide-2-oxides in the presence of a diene results in formal sulfur monoxide (SO) transfer to form unsaturated cyclic sulfoxides, along with a recyclable 1,8-naphthalene disulfide. The presence of o-methoxy or o-tert-butyl substituents on the naphthalene ring lowers the temperature and increases the rate at which SO transfer occurs. Trapping experiments and kinetic studies are consistent with the generation of triplet SO, followed by in situ trapping by diene. Transfer of SO also occurs upon irradiation at room temperature, but yields of sulfoxide are lower. Dehydration of the sulfoxides under Pummerer conditions gives thiophenes, including the naturally occurring thioperillene. Two dienes form thiophenes directly under the SO transfer conditions. The methodology is applied in a formal synthesis of the antiplatelet medication Plavix.  相似文献   
108.
Herein we report the use of a tetrazine-norbornene inverse electron demand Diels-Alder conjugation applied to polymer end-functionalization and polymer-polymer coupling. The reaction was found to be applicable to polymer-polymer coupling, as judged by SEC, DOSY NMR, and LCxSEC analyses, giving diblock copolymers by merely mixing the constituent homopolymers together under ambient conditions, using no catalyst, additive, or external stimulus.  相似文献   
109.
Sortin1 is a chemical genetic-hit molecule that causes specific mislocalization of plant and yeast-soluble and membrane vacuolar markers. To better understand its mode of action, we designed a Sortin1-hypersensitive screen and identified several Sortin1-hypersensitive and flavonoid-defective mutants. Mechanistically, Sortin1 mimics the effect of the glutathione inhibitor buthionine sulfoximine and alters the vacuolar accumulation of flavonoids, likely blocking their transport through vacuole-localized ABC transporters. Structure-activity relationship studies conducted in Arabidopsis revealed the structural requirements for Sortin1 bioactivity and demonstrated that overlapping Sortin1 substructures can be used to discriminate between vacuolar-flavonoid accumulations and vacuolar-biogenesis defects. We conclude that Sortin1 is a valuable probe for dissecting novel links among flavonoid transport, vacuolar integrity, and the trafficking of vacuolar targeted cargoes in Arabidopsis.  相似文献   
110.
We describe three new strategies for determining heterogeneous reaction rates using photomicroscopy to measure the rate of retreat of metal surfaces: (i) spheres in a stirred solution, (ii) microscopic powder in an unstirred solution, and (iii) spheres on a rotating shaft. The strategies are applied to indium-mediated allylation (IMA), which is a powerful tool for synthetic chemists because of its stereoselectivity, broad applicability, and high yields. The rate-limiting step of IMA, reaction of allyl halides at indium metal surfaces, is shown to be fast, with a minimum value of the heterogeneous rate constant of 1 × 10(-2) cm/s, an order of magnitude faster than the previously determined minimum value. The strategies described here can be applied to any reaction in which the surface is retreating or advancing, thereby broadening the applicability of photomicroscopy to measuring heterogeneous reaction kinetics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号