首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   2篇
化学   42篇
数学   8篇
物理学   12篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   4篇
  2009年   2篇
  2008年   4篇
  2007年   3篇
  2006年   6篇
  2005年   2篇
  2004年   6篇
  2003年   2篇
  2002年   1篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1984年   1篇
  1981年   1篇
  1971年   2篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
11.
Here, the effect of solvent on the stability of non-covalent complexes, was studied. These complexes were from previously published S22, S66, and X40 datasets, which include hydrogen-, halogen- and dispersion-bonded complexes. It was shown that the charge transfer in the complex determines whether the complex is stabilized or destabilized in solvent.  相似文献   
12.
In this study, methanol extracts (MEs) and essential oil (EO) of Angelica purpurascens (Avé-Lall.) Gill obtained from different parts (root, stem, leaf, and seed) were evaluated in terms of antioxidant activity, total phenolics, compositions of phenolic compound, and essential oil with the methods of 2,2-azino-bis(3ethylbenzo-thiazoline-6-sulfonic acid (ABTS•+), 2,2-diphenyl-1-picrylhydrazil (DPPH•) radical scavenging activities, and ferric reducing/antioxidant power (FRAP), the Folin–Ciocalteu, liquid chromatography−tandem mass spectrometry (LC−MS/MS), and gas chromatography-mass spectrometry (GC−MS), respectively. The root extract of A. purpurascens exhibited the highest ABTS•+, DPPH•, and FRAP activities (IC50: 0.05 ± 0.0001 mg/mL, IC50: 0.06 ± 0.002 mg/mL, 821.04 ± 15.96 µM TEAC (Trolox equivalent antioxidant capacity), respectively). Moreover, EO of A. purpurascens root displayed DPPH• scavenging activity (IC50: 2.95 ± 0.084 mg/mL). The root extract had the highest total phenolic content (438.75 ± 16.39 GAE (gallic acid equivalent), µg/mL)). Twenty compounds were identified by LC−MS/MS. The most abundant phenolics were ferulic acid (244.39 ± 15.64 μg/g extract), benzoic acid (138.18 ± 8.84 μg/g extract), oleuropein (78.04 ± 4.99 μg/g extract), and rutin (31.21 ± 2.00 μg/g extract) in seed, stem, root, and leaf extracts, respectively. According to the GC−MS analysis, the major components were determined as α-bisabolol (22.93%), cubebol (14.39%), α-pinene (11.63%), and α-limonene (9.41%) among 29 compounds. Consequently, the MEs and EO of A. purpurascens can be used as a natural antioxidant source.  相似文献   
13.
The relaxation of the metastable state of the spin-crossover compound [Fe(L)(2)](ClO(4))(2).H(2)O, with L = 2,6-bis(pyrazol-1-ylmethyl)pyridine, populated by the LIESST (light induced excited spin state trapping) effect, has been investigated by magnetic measurements. The time dependence of the relaxation curve at several temperatures, starting from different initial states, is in the shape of stretched exponentials, and the thermal variation of the photostationary state under constant photoexcitation is progressive and reversible. These features are satisfactorily modeled by considering noninteracting two-level systems with a distribution of activation energies. A suggested origin for the distribution is the conformational flexibility of the nonplanar heterocyclic ligands. The effect of the intensity distribution during the LIESST process is also accounted for in a simple way.  相似文献   
14.
The selective liquid–liquid extraction of various transition metal cations from the aqueous phase to the organic phase was carried out using a 14-membered N2O2S2-macrobicycle. Metal picrates such as Pb2+, Co2+, Zn2+, Ni2+,Cu2+ and Cd2+ were used in this extraction studies. It was found that the ligand showed moderate selectivity towards Pb2+ only among the other metals. The extraction constant (log K ex) was determined to be 13.8 for Pb2+ complex.  相似文献   
15.
Acyclic pyrazine-2-carboxamide and thioether containing hexadentate ligand 1,4-bis[o-(pyrazine-2-carboxamidophenyl)]-1,4-dithiobutane (H(2)bpzctb), in its deprotonated form, has afforded light brown [Ni(II)(bpzctb)](1)(S=1) and green [Cu(II)(bpzctb)](2)(S=1/2) complexes. The crystal structures of 1.CH(3)OH and 2.CH(2)Cl(2) revealed that in these complexes the ligand coordinates in a hexadentate mode, affording examples of distorted octahedral M(II)N(2)(pyrazine)N'(2)(amide)S(2)(thioether) coordination. Each complex exhibits in CH(2)Cl(2) a reversible to quasireversible cyclic voltammetric response, corresponding to the Ni(III)/Ni(II)(1) and Cu(II)/Cu(I)(2) redox process. The E(1/2) values reveal that the complexes of bpzctb(2-) are uniformly more anodic by approximately 0.2 V than those of the corresponding complexes with the analogous pyridine ligand, 1,4-bis[o-(pyridine-2-carboxamidophenyl)]-1,4-dithiobutane (H(2)bpctb), attesting that compared to pyridine, pyrazine is a better stabilizer of the Ni(ii) or Cu(i) state. Coulometric oxidation of the previously reported complex [Ni(II)(bpctb)] and 1 generates [Ni(III)(bpctb)](+) and [Ni(III)(bpzctb)](+) species, which exhibit a LMCT transition in the 470--480 nm region and axial EPR spectra corresponding to a tetragonally elongated octahedral geometry. Complex 2 exhibits EPR spectra characteristic of the d(z(2)) ground state.  相似文献   
16.
Tetrathiomolybdate reacts with iron (II) in the presence of bidentate ligands to form neutral binuclear complexes [Fe(N–N)2MoS4] [N–N=2-2bipyridine(bipy) and 1,10-phenanthroline(phen)] showing intermediate spin character for FeII. The spin state of the complexes has been examined by variable temperature magnetic moment (VTM) measurements and by variable temperature Mössbauer spectroscopy. The Mössbauer spectra indicate the presence of two iron sites: one of intermediate spin and the other of low spin at room temperature. The low spin site predominates over the intermediate spin as the temperature is lowered. The structural features of the complexes are supported by i.r., Raman, electronic and FAB mass spectra and by X-ray powder diffraction data. Substitution of one bipy/phen ligand in [Fe(N–N)3]2+ by MS4 2– ligands does not impart any major effect towards the size of the redox potentials of the tris-bipy/phen complexes, although the reversible nature of their cyclic voltammetric response is affected.  相似文献   
17.
A copper(I) compound [(L2)Cu(MeCN)2][ClO4] (1) containing a new bidentate N-donor ligand L2, 1-benzyl-[3-(2'-pyridyl)]pyrazole, derived from the condensation of HL1 [HL1 = 3-(2-pyridyl)pyrazole] and benzyl chloride, has been synthesized. Structural analysis reveals that in the copper(I) centre is coordinated by a pyridine and a pyrazole nitrogen from L2 and two MeCN molecules, providing a distorted tetrahedral geometry. Reaction of with dioxygen in N,N'-dimethylformamide (dmf) at 25 degrees C and subsequent workup with MeCO2Et afforded an acetato-/pyrazolato-bridged polymeric copper(II) compound [(mu-L1)Cu(mu-O2CMe)]n (2). Notably, the deprotonated form of HL(1) and MeCO2- have originated from debenzylation of L2 and hydrolysis of MeCO2Et, respectively. The structural analysis of reveals a near-planar {Cu2(mu-L1)2}2+ core unit in which two adjacent Cu(II) ions are bridged by the deprotonated N,N-bidentate pyridylpyrazole units of two L1 and each such {Cu2(mu-L1)2}2+ unit is bridged by MeCO2- in a monodentate bridging mode [Cu...Cu separations (A): 3.9232(4) pyrazolate bridge; 3.3418(4) acetate bridge], providing a polymeric network. Careful oxygenation of in MeCN led to the isolation of a dihydroxo-bridged dicopper(II) compound [{(L2)Cu(mu-OH)(OClO3)}2] (3). Interestingly, complex brings about hydrolysis of MeCO2Et under mild conditions (dmf, ca. 60 degrees C), generating a bis-mu-1,3-acetato-bridged dicopper(II) complex, [{(L2)Cu(dmf)(mu-O2CMe)}2][ClO4]2.dmf.0.5MeCO2H (4). Compounds and have {Cu2(mu-OH)2}2+ [Cu...Cu separation of 2.8474(9) A] and {Cu2(mu-O2CMe)2}2+ cores [Cu...Cu separation: 3.0988(26) and 3.0792(29) A (two independent molecules in the asymmetric unit)] in which each Cu(II) centre is terminally coordinated by L2. A rationale has been provided for the observed debenzylation of L2 and hydrolysis of MeCO(2)Et. The intramolecular magnetic coupling between the Cu(II) (S = 1/2) ions was found to be ferromagnetic (2J = 82 cm(-1)) in the case of , but antiferromagnetic for (2J = -158 cm(-1)) and (2J = -96 cm(-1)). Absorption and EPR spectroscopic properties of the copper(II) compounds have also been investigated.  相似文献   
18.
Intramolecular ligand hydroxylation was observed during the reactions of dioxygen with the dicopper(I) complexes of the ligands L(1)(L(1)=alpha,alpha'-bis[(2-pyridylethyl)amino]-m-xylene) and L(3)(L(3)=alpha, alpha'-bis[N-(2-pyridylethyl)-N-(2-pyridylmethyl)amino]-m-xylene). The dinuclear copper(I) complex [Cu(2)L(3)](ClO(4))(2) and the dicopper(II) complex [Cu(2)(L(1)-O)(OH)(ClO(4))]ClO(4) were characterized by single-crystal X-ray structure analysis. Furthermore, phenolate-bridged complexes were synthesized with the ligand L(2)-OH (structurally characterized [Cu(2)(L(2)-O)Cl(3)] with L(2)=alpha, alpha'-bis[N-methyl-N-(2-pyridylethyl)amino]-m-xylene; synthesized from the reaction between [Cu(2)(L(2)-O)(OH)](ClO(4))(2) and Cl(-)) and Me-L(3)-OH: [Cu(2)(Me-L(3)-O)(mu-X)](ClO(4))(2)xnH(2)O (Me-L(3)-OH = 2,6-bis[N-(2-pyridylethyl)-N-(2-pyridylmethyl)amino]-4-methylphenol and X = C(3)H(3)N(2)(-)(prz), MeCO(2)(-) and N(3)(-)). The magnetochemical characteristics of compounds were determined by temperature-dependent magnetic studies, revealing their antiferromagnetic behaviour [-2J(in cm(-1)) values: -92, -86 and -88; -374].  相似文献   
19.

Background

As development proceeds the human embryo attains an ever more complex three dimensional (3D) structure. Analyzing the gene expression patterns that underlie these changes and interpreting their significance depends on identifying the anatomical structures to which they map and following these patterns in developing 3D structures over time. The difficulty of this task greatly increases as more gene expression patterns are added, particularly in organs with complex 3D structures such as the brain. Optical Projection Tomography (OPT) is a new technology which has been developed for rapidly generating digital 3D models of intact specimens. We have assessed the resolution of unstained neuronal structures within a Carnegie Stage (CS)17 OPT model and tested its use as a framework onto which anatomical structures can be defined and gene expression data mapped.

Results

Resolution of the OPT models was assessed by comparison of digital sections with physical sections stained, either with haematoxylin and eosin (H&E) or by immunocytochemistry for GAP43 or PAX6, to identify specific anatomical features. Despite the 3D models being of unstained tissue, peripheral nervous system structures from the trigeminal ganglion (~300 μm by ~150 μm) to the rootlets of cranial nerve XII (~20 μm in diameter) were clearly identifiable, as were structures in the developing neural tube such as the zona limitans intrathalamica (core is ~30 μm thick). Fourteen anatomical domains have been identified and visualised within the CS17 model. Two 3D gene expression domains, known to be defined by Pax6 expression in the mouse, were clearly visible when PAX6 data from 2D sections were mapped to the CS17 model. The feasibility of applying the OPT technology to all stages from CS12 to CS23, which encompasses the major period of organogenesis for the human developing central nervous system, was successfully demonstrated.

Conclusion

In the CS17 model considerable detail is visible within the developing nervous system at a minimum resolution of ~20 μm and 3D anatomical and gene expression domains can be defined and visualised successfully. The OPT models and accompanying technologies for manipulating them provide a powerful approach to visualising and analysing gene expression and morphology during early human brain development.  相似文献   
20.
In this paper, we consider the equation x 2?L n x y+(?1) n y 2 = ±5 r and determine the values of n for which the equation has positive integer solutions x and y. Moreover, we give all positive integer solutions of the equation x 2?L n x y+(?1) n y 2 = ±5 r when the equation has positive integer solutions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号