首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4548篇
  免费   661篇
  国内免费   374篇
化学   3256篇
晶体学   51篇
力学   239篇
综合类   23篇
数学   530篇
物理学   1484篇
  2024年   17篇
  2023年   111篇
  2022年   173篇
  2021年   184篇
  2020年   166篇
  2019年   146篇
  2018年   140篇
  2017年   109篇
  2016年   200篇
  2015年   204篇
  2014年   247篇
  2013年   279篇
  2012年   346篇
  2011年   386篇
  2010年   237篇
  2009年   234篇
  2008年   281篇
  2007年   258篇
  2006年   234篇
  2005年   199篇
  2004年   167篇
  2003年   152篇
  2002年   128篇
  2001年   103篇
  2000年   90篇
  1999年   114篇
  1998年   100篇
  1997年   90篇
  1996年   90篇
  1995年   78篇
  1994年   54篇
  1993年   33篇
  1992年   37篇
  1991年   32篇
  1990年   23篇
  1989年   17篇
  1988年   21篇
  1987年   19篇
  1986年   13篇
  1985年   9篇
  1984年   16篇
  1983年   4篇
  1982年   5篇
  1981年   3篇
  1980年   9篇
  1978年   2篇
  1976年   7篇
  1975年   3篇
  1974年   2篇
  1972年   2篇
排序方式: 共有5583条查询结果,搜索用时 0 毫秒
131.
We study a model of scalars which includes both the SM Higgs and a scalar singlet as composites of heavy vector-like fermions. The vector-like fermions are bounded by the super-strong four-fermion interactions. The scalar singlet decays to SM vector bosons through loop of heavy vector-like fermions. We show that the surprisingly large production cross section of di-photon events at 750 GeV resonance and the odd decay properties can all be explained. This model serves as a good model for both SM Higgs and a scalar resonance at 750 GeV.  相似文献   
132.
The quality of PMT signals is crucial for large-size and high-precision neutrino experiments, but most of these experiments are affected by the overshoot of PMT signals from the positive HV-single cable scheme. Overshoot affects the trigger, dead time and charge measurement from a detector. For the JUNO prototype detector, we have performed a detailed study and calculation on PMT signal overshoot to control the ratio of overshoot to signal amplitude to ~1%, with no effect on other PMT parameters.  相似文献   
133.
The junction properties of tunnel silicon oxide (SiOx) passivated contact (TOPCon) with n-type poly-Si on p-type c-Si wafer are characterized using current-voltage (J-V) and capacitance-voltage (C-V) measurements. The dark J-V curves show a standard diode characteristic with a turn-on voltage of ~0.63 V, indicating a p-n junction is formed. While the C-V curve displays an irregular shape with features of 1) a slow C increase with the decrease of the magnitude of reverse bias voltage, being used to estimate the built-in potential (Vbi), 2) a significant increase at a given positive bias voltage, corresponding to the geometric capacitance crossing the ultrathin SiOx, and 3) a sharp decrease to negative values, resulting from the charge tunneling through the SiOx layer. The C of depleting layer deviates from the normal linear curve in the 1/C2-V plot, which is caused by the diffusion of P dopants from the n-type poly-Si into the p-type c-Si wafer as confirmed by the electrochemical capacitance-voltage measurements. However, the 1/C2+γ-V plots with γ > 0 leads to linear curves with a proper γ and the Vbi can still be estimated. We find that the Vbi is the range of 0.75–0.85 V, increases with the increase of the doping ratio during the poly-Si fabrication process, and correlates with the passivation quality as measured by the reverse saturated current and implied open circuit voltage extracted from transient photoconductivity decay.  相似文献   
134.
135.
Despite efforts to stabilize sodium metal anodes and prevent dendrite formation, achieving long cycle life with high areal capacities remains difficult owing to a combination of complex failure modes that involve retardant uneven sodium nucleation and subsequent dendrite formation. Now, a sodiophilic interphase based on oxygen‐functionalized carbon nanotube networks is presented, which concurrently facilitates a homogeneous sodium nucleation and a dendrite‐free, lateral growth behavior upon recurring sodium plating/stripping processes. This sodiophilic interphase renders sodium anodes with an ultrahigh capacity of 1078 mAh g?1 (areal capacity of 10 mAh cm?2), approaching the theoretical capacity of 1166 mAh g?1 of pure sodium, as well as a long cycle life up to 3000 cycles. Implementation of this anode allows for the construction of a sodium–air battery with largely enhanced cycling performance owing to the oxygen functionalization‐mediated, dendrite‐free sodium morphology.  相似文献   
136.
Two wide-bandgap polymer donors containing an alkylthiophenyl substituted benzo[1,2-b : 4,5-b′]dithiophene moiety, namely PTZPO and PTZPS, were designed and synthesized. Both polymers exhibit relatively wide optical bandgap of 1.95 V with similar absorption profiles. The polymer PTZPS with alkylthiophenyl substituted benzo[1,2-b : 4,5-b′]dithiophene units showed enhanced light-harvesting capabilities, leading to improved short-circuit current densities. The PTZPS : ITIC film shows more appreciable film morphology and phase separation than the film composed of a blend of ITIC with alkoxyl substitutions containing copolymer PTZPO, which facilitates exciton dissociation and charge transport. The PTZPS : ITIC-based non-fullerene organic solar cells show clearly improved short-circuit current density and an impressively high power conversion efficiency of more than 11 %. These observations demonstrate the great promise of using PTZPS as electron-donating materials for high-performance non-fullerene organic solar cells.  相似文献   
137.
Piezoelectric materials are a class of important functional materials applied in high‐voltage sources, sensors, vibration reducers, actuators, motors, and so on. Herein, [(CH3)3S]3[Bi2Br9]( 1 ) is a brilliant semiconducting organic–inorganic hybrid perovskite‐type non‐ferroelectric piezoelectric with excellent piezoelectricity. Strikingly, the value of the piezoelectric coefficient d33 is estimated as ≈18 pC N?1. Such a large piezoelectric coefficient in non‐ferroelectric piezoelectric has been scarcely reported and is comparable with those of typically one‐composition non‐ferroelectric piezoelectrics such as ZnO (3pC N?1) and much greater than those of most known typical materials. In addition, 1 exhibits semiconducting behavior with an optical band gap of ≈2.58 eV that is lower than the reported value of 3.37 eV for ZnO. This discovery opens a new avenue to exploit molecular non‐ferroelectric piezoelectric and should stimulate further exploration of non‐ferroelectric piezoelectric due to their high stability and low loss characteristics.  相似文献   
138.

We present a quantum protocol for resolving the detectable Byzantine agreement (BA) problem using tripartite Greenberger–Horne–Zeilinger(GHZ)-like states and homodyne measurements in the continuous variable (CV) scenario. The protocol considers the simplest (i.e., three-player) BA problem involving one broadcaster and two receivers who jointly participant in the distribution, test, and agreement phases. The GHZ-like states provide the quantum resources for implementing the primitive of BA and satisfy a priori entanglement bound. Analyses demonstrate that the proposed quantum solution adheres to the agreement, validity, and termination criteria. Conveniently, the beam splitter strategy along with photon detection offers a method for comparing quantum messages. The paper shows that a potential high-efficiency CV-based BA protocol can be achieved using standard off-the-shelf components in quantum optics, maintaining the desirable characteristics of CVs when compared with discrete-variable BA protocol.

  相似文献   
139.
Biological foam ceramic is a promising material for tissue engineering scaffold because of its biocompatibility, biodegradation and adequate pores measured from micrometer to nanometers. The aim of this study was to evaluate the adhesion and proliferation of adipose-derived stromal cells (ADSCs) on the biological foam ceramic coated with fibronectin. ADSCs were harvested from SD rats and passaged three times prior to seeding onto biological foam surface modified with fibronectin (50 μg/ml). Scaffold without surface modification served as control. To characterize cellular attachment, cells were incubated on the scaffold for 1 h and 3 h and then the cells attached onto the scaffold were counted. The difference of proliferation was appraised using MTT assay at day 1, 3, 5 and 7 before the cells reached confluence. After 7 days of culture, scanning electron microscope (SEM) was chosen to assess cell morphology and attachment of ADSCs on the biological foam ceramic. Attachment of ADSCs on the biological foam ceramic surface modified with fibronectin at 1 h or 3 h was substantially greater than that in control. MTT assay revealed that ADSCs proliferation tendency of the experimental group was nearly parallel to that of control. SEM view showed that ADSCs in the experimental groups connected more tightly and excreted more collagen than that in control. The coating of fibronectin could improve the cell adhesive ability of biological foam ceramics without evident effect on proliferation.  相似文献   
140.
In this investigation we address the problem of adjoint-based optimization of PDE systems in moving domains. As an example we consider the one-dimensional heat equation with prescribed boundary temperatures and heat fluxes. We discuss two methods of deriving an adjoint system necessary to obtain a gradient of a cost functional. In the first approach we derive the adjoint system after mapping the problem to a fixed domain, whereas in the second approach we derive the adjoint directly in the moving domain by employing methods of the noncylindrical calculus. We show that the operations of transforming the system from a variable to a fixed domain and deriving the adjoint do not commute and that, while the gradient information contained in both systems is the same, the second approach results in an adjoint problem with a simpler structure which is therefore easier to implement numerically. This approach is then used to solve a moving boundary optimization problem for our model system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号