首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   0篇
化学   53篇
力学   1篇
数学   3篇
物理学   15篇
  2013年   8篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   4篇
  2007年   6篇
  2006年   5篇
  2005年   8篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  1999年   2篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1985年   1篇
  1984年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1976年   3篇
  1975年   3篇
  1974年   1篇
  1970年   1篇
排序方式: 共有72条查询结果,搜索用时 234 毫秒
41.
A grand canonical ensemble Monte Carlo method is developed for application to electrolyte solutions.

The method proves to be of comparable accuracy and speed to the conventional NVT Monte Carlo method for electrolytes but has the added advantage of being able to fix the chemical potential. This latter point is vital for the study of surface phenomena. Application of the method to 1:1 and 2:2 primitive model electrolytes is made as is a comparison with the results of approximate statistical mechanical treatments.  相似文献   
42.
43.
Since their discovery in 1990, the study of sp2 bonded carbon nanotubes has grown into a field of research in it's own right; however the development of the sp3 analog, diamond nanowires, has been slow. A number of theoretical models have been proposed to compare the relative stability of diamond and graphite at the nanoscale; and more recently, to compare nanodiamonds and fullerenes. Presented here is a study of the phase stability of nanocarbon in one-dimension. The structural energies of carbon nanotubes and diamond nanowires have been calculated using density functional theory within the generalized gradient approximation, and used to determine the atomic heat of formation as a function of size.  相似文献   
44.
We report diffusion quantum Monte Carlo (DMC) calculations of the equilibrium dissociation energy D(e) of the water dimer. The dissociation energy measured experimentally, D(0), can be estimated from D(e) by adding a correction for vibrational effects. Using the measured dissociation energy and the modern value of the vibrational energy Mas et al., [J. Chem. Phys. 113, 6687 (2000)] leads to D(e)=5.00+/-0.7 kcal mol(-1), although the result Curtiss et al., [J. Chem. Phys. 71, 2703 (1979)] D(e)=5.44+/-0.7 kcal mol(-1), which uses an earlier estimate of the vibrational energy, has been widely quoted. High-level coupled cluster calculations Klopper et al., [Phys. Chem. Chem. Phys. 2, 2227 (2000)] have yielded D(e)=5.02+/-0.05 kcal mol(-1). In an attempt to shed new light on this old problem, we have performed all-electron DMC calculations on the water monomer and dimer using Slater-Jastrow wave functions with both Hartree-Fock approximation (HF) and B3LYP density functional theory single-particle orbitals. We obtain equilibrium dissociation energies for the dimer of 5.02+/-0.18 kcal mol(-1) (HF orbitals) and 5.21+/-0.18 kcal mol(-1) (B3LYP orbitals), in good agreement with the coupled cluster results.  相似文献   
45.
This paper describes the design, construction and implementation of a relatively large controlled‐atmosphere cell and furnace arrangement. The purpose of this equipment is to facilitate the in situ characterization of materials used in molten salt electrowinning cells, using high‐energy X‐ray scattering techniques such as synchrotron‐based energy‐dispersive X‐ray diffraction. The applicability of this equipment is demonstrated by quantitative measurements of the phase composition of a model inert anode material, which were taken during an in situ study of an operational Fray–Farthing–Chen Cambridge electrowinning cell, featuring molten CaCl2 as the electrolyte. The feasibility of adapting the cell design to investigate materials in other high‐temperature environments is also discussed.  相似文献   
46.
Presented are results of our ab initio study of the surface reconstruction and relaxation of (1 0 0) surfaces on diamond nanowires. We have used a density function theory within the generalized-gradient approximation using the Vienna ab initio simulation package, to consider dehydrogenated and hydrogenated surfaces. Edges of nanowires offer a new challenge in the determination of surface structure. We have applied the methodology for stepped diamond (1 0 0) surfaces to this problem, and consider it useful in describing diamond nanowire edges to first approximation. We have found that dimer lengths and atomic layer depths of the C(1 0 0)(2 × 1) and C(1 0 0)(2 × 1):H nanowire surfaces differ slightly from those of bulk diamond and nanodiamond surfaces. The aim of this study is provide a better understanding of the effects of nano-scale surfaces on the stability of diamond nanostructures.  相似文献   
47.
It is well known that the motion of three particles sedimenting in a Stokes fluid is of a simple periodic function of time if the initial configuration is a horizontal, equilateral triangle. We use the method of induced forces to show that if this ititial configuration is made less symmetric then many much more complex structures, which are still periodic in time, may result which involve a sequence of inequivalent configurations. This confirms that the horizontal isosceles triangle configuration is remarkably robust against perturbations.  相似文献   
48.
In this communication reflection mode Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) is used to obtain IR spectra of four prostate and prostate cancer cell line types (CaP) allowing their differentiation by principal components analysis.  相似文献   
49.
50.
We have studied the thermodynamic and kinetic growth mechanisms behind the formation of the "pancake" decahedron (D(h)) gold nanoparticle using computer simulation. Free energy calculations showed that the full pancake morphology is thermodynamically unstable across all the nanoparticle size ranges studied. However, from observations of growth simulations we discovered that a kinetic transport mechanism plays a significant contributing role in the formation process through a transfer of adatoms from the top and bottom (111) D(h) faces to the side (100) faces. More specifically we observed how diffusing adatoms on the (111) face are at times "pulled" off this face and into the (111)-(100) edge of the D(h), forcing a row of (100) side atoms into a (1x5) hexagonal reconstruction. Subsequently, this row of atoms was observed to buckle and then deconstruct forcing adatoms out onto the (100) side face completing the transfer. This transport mechanism is shown to be the main kinetic driving force behind the growth of the thermodynamically unstable pancake D(h) nanoparticle. The observed mechanism has implications for the nonequilibrium morphologies of nanoparticles involving a (100)-(111) surface boundary, especially for systems with surface reconstructions which increase the density of the surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号