首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   4篇
化学   176篇
力学   1篇
数学   3篇
物理学   16篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2019年   2篇
  2018年   4篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   3篇
  2012年   17篇
  2011年   14篇
  2010年   5篇
  2009年   5篇
  2008年   17篇
  2007年   14篇
  2006年   16篇
  2005年   18篇
  2004年   15篇
  2003年   13篇
  2002年   15篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1937年   1篇
排序方式: 共有196条查询结果,搜索用时 62 毫秒
191.
Select ferrous spin-transition complexes with the pentadentate ligand 2,6-bis(bis(2-pyridyl)methoxymethane)pyridine (PY5) were examined using variable-temperature solution solid-state magnetic susceptibility, crystallography, X-ray absorption spectroscopy (XAS), and UV/vis absorption spectroscopy. Altering the single exogeneous ligand, X, of [Fe(PY5)(X)]n)+ is sufficient to change the spin-state of the complexes. When X is the weak-field ligand Cl-, the resultant Fe complex is high-spin from 4 to 300 K, whereas the stronger-field ligand MeCN generates a low-spin complex over this temperature range. With intermediate-strength exogenous ligands (X = N3-, MeOH), the complexes undergo a spin-transition. [Fe(PY5)(N3)]+, as a crystalline solid, transitions gradually from a high-spin to a low-spin complex as the temperature is decreased, as evidenced by X-ray crystallography and solid-state magnetic susceptibility measurements. The spin-transition is also evident from changes in the pre-edge and EXAFS regions of the XAS Fe K-edge spectra on a ground crystalline sample. The spin-transition observed with [Fe(PY5)(MeOH)]2+ appears abrupt by solid-state magnetic susceptibility measurements, but gradual by XAS analysis, differences attributed to sample preparation. This research highlights the strengths of XAS in determining the electronic and geometric structure of such spin-transition complexes and underscores the importance of identical sample preparation in the investigation of these physical properties.  相似文献   
192.
Hydrogen bonding (H-bonding) is generally thought to play an important role in tuning the electronic structure and reactivity of metal-sulfur sites in proteins. To develop a quantitative understanding of this effect, S K-edge X-ray absorption spectroscopy (XAS) has been employed to directly probe ligand-metal bond covalency, where it has been found that protein active sites are significantly less covalent than their related model complexes. Sulfur K-edge XAS data are reported here on a series of P450 model complexes with increasing H-bonding to the ligated thiolate from its substituent. The XAS spectroscopic results show a dramatic decrease in preedge intensity. DFT calculations reproduce these effects and show that the observed changes are in fact solely due to H-bonding and not from the inductive effect of the substituent on the thiolate. These calculations also indicate that the H-bonding interaction in these systems is mainly dipolar in nature. The -2.5 kcal/mol energy of the H-bonding interaction was small relative to the large change in ligand-metal bond covalency (30%) observed in the data. A bond decomposition analysis of the total energy is developed to correlate the preedge intensity change to the change in Fe-S bonding interaction on H-bonding. This effect is greater for the reduced than the oxidized state, leading to a 260 mV increase in the redox potential. A simple model shows that E degrees should vary approximately linearly with the covalency of the Fe-S bond in the oxidized state, which can be determined directly from S K-edge XAS.  相似文献   
193.
Sulfur K-edge X-ray absorption spectroscopy (XAS) is reported for [Fe(4)S(4)](1+,2+,3+) clusters. The results are quantitatively and qualitatively compared with DFT calculations. The change in covalency upon redox in both the [Fe(4)S(4)](1+/2+) (ferredoxin) and the [Fe(4)S(4)](2+/3+) (HiPIP) couple are much larger than that expected from just the change in number of 3d holes. Moreover, the change in the HiPIP couple is higher than that of the ferredoxin couple. These changes in electronic structure are analyzed using DFT calculations in terms of contributions from the nature of the redox active molecular orbital (RAMO) and electronic relaxation. The results indicate that the RAMO of HiPIP has 50% ligand character, and hence, the HiPIP redox couple involves limited electronic relaxation. Alternatively, the RAMO of the ferredoxin couple is metal-based, and the ferredoxin redox couple involves extensive electronic relaxation. The contributions of these RAMO differences to ET processes in the different proteins are discussed.  相似文献   
194.
Our understanding of how the geometry of metallic nanostructures controls the properties of their surface plasmons, based on plasmon hybridization, is useful for developing high-performance substrates for surface enhanced spectroscopies. In this tutorial review, we outline the design of metallic nanostructures tailored specifically for providing electromagnetic enhancements for surface enhanced Raman scattering (SERS). The concepts developed for nanoshell-based substrates can be generalized to other nanoparticle geometries and scaled to other spectroscopies, such as surface enhanced infrared absorption spectroscopy (SEIRA).  相似文献   
195.
There are many reports1 of the pyrolysis of fluorinated organic compounds, including the defluorination of cyclic fluorocarbons over iron to give aromatic compounds. Extending this technique we have investigated the flow pyrolysis of some readily accessible unsaturated fluorocarbons, such as I, II, and III, and found these to be synthetically
useful routes to fluorinated dienes, cyclobutenes, and furans. Pyrolyses were carried out using a nitrogen flow over platinum, iron or caesium fluoride heated at 430–700°. The various products can all be rationalized in terms of intermediate allylic radicals, and the solid substrate influences which allylic radicals are formed.We are also investigating the chemistry of those now accessible compounds, such as IV, V, and VI, and some of the preliminary results are described.
For example the fluoride ion induced dimerisation of IV gave two major products VII and VIII via a particular interesting mechanism.
  相似文献   
196.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号