首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   344077篇
  免费   3641篇
  国内免费   1303篇
化学   187373篇
晶体学   5395篇
力学   14065篇
综合类   7篇
数学   38111篇
物理学   104070篇
  2019年   2600篇
  2018年   3012篇
  2017年   2885篇
  2016年   4943篇
  2015年   3485篇
  2014年   5074篇
  2013年   15182篇
  2012年   10875篇
  2011年   13627篇
  2010年   8867篇
  2009年   8586篇
  2008年   12224篇
  2007年   12316篇
  2006年   11663篇
  2005年   11040篇
  2004年   9773篇
  2003年   8782篇
  2002年   8621篇
  2001年   9870篇
  2000年   7453篇
  1999年   5955篇
  1998年   5019篇
  1997年   5052篇
  1996年   4746篇
  1995年   4587篇
  1994年   4252篇
  1993年   4285篇
  1992年   4689篇
  1991年   4707篇
  1990年   4395篇
  1989年   4382篇
  1988年   4417篇
  1987年   4366篇
  1986年   4137篇
  1985年   5678篇
  1984年   5898篇
  1983年   4921篇
  1982年   5459篇
  1981年   5235篇
  1980年   5162篇
  1979年   5157篇
  1978年   5521篇
  1977年   5261篇
  1976年   5442篇
  1975年   5019篇
  1974年   4983篇
  1973年   5457篇
  1972年   3356篇
  1971年   2578篇
  1968年   2444篇
排序方式: 共有10000条查询结果,搜索用时 14 毫秒
41.
A monolayer of covalently anchored, novel, binaphthyl ketone is used as a surface‐confined photochemical radical generator (PRG) for anchoring a variety of polymers to silicon surfaces. The precursor PRG is synthesized by the application of a facile and novel method for the oxidation of sterically hindered benzylic hydrocarbons to carbonyl compounds. Oxidation was carried out with a stoichiometric amount of potassium peroxydisulfate, in the presence of a catalytic amount of copper sulfate in an acetonitrile/water mixture. The PRG synthesized is characterized by 1H NMR, UV, and Fourier transform infrared (FTIR). The covalently attached monolayers are characterized by X‐ray photoelectron spectroscopy, ellipsometry, and water contact angle measurements. The method developed is applicable to the preparation of a monolayer of a variety of polymers on a wide range of substrates carrying surface hydroxyl groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5413–5423, 2004  相似文献   
42.
A novel dinitroxide mediating agent that was suitable for stable free‐radical polymerization was synthesized and used in the block copolymerization of styrene and t‐butyl styrene. Quantitative yields of a novel dinitroxide based on 1,6‐hexamethylene diisocyanate and 4‐hydroxy‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy were obtained. Various experimental parameters, including the nitroxide‐to‐initiator molar ratio, were examined, and it was determined that the polymerization was most controlled under conditions similar to those of conventional 2,2,6,6‐tetramethyl‐1‐piperidinyloxy‐mediated stable free‐radical polymerization. Moreover, the dinitroxide mediator proved to be a viable route for the facile two‐step synthesis of triblock copolymers of styrene and t‐butyl styrene. However, the dinitroxide mediation process resulted in a higher than expected level of nitroxide decomposition, which resulted in polymers possessing a terminal alkoxyamine and an adjacent hydroxylamine rather than a preferred internal bisalkoxyamine. This decomposition resulted in the formation of diblock copolymer species during the triblock copolymer synthesis. Gel permeation chromatography was used to monitor the chain‐end decomposition kinetics, and the determined observed rate constant (5.89 × 10?5 s?1) for decomposition agreed well with previous studies for other dinitroxide mediating agents. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1547–1556, 2004  相似文献   
43.
Pyridine‐2‐carboximidates [methyl ( 1a ), ethyl ( 1b ), isopropyl ( 1c ), cyclopentyl ( 1d ), cyclohexyl ( 1e ), n‐octyl ( 1f ), and benzyl ( 1g )] were prepared from the reaction of 2‐cyanopyridine with the corresponding alcohols. Cyclopentyl‐substituted 1d was found to be a highly effective ligand for copper‐catalyzed atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA). For example, the observed rate constant for a CuBr/ 1d catalytic system was found to be nearly twice as high as the cyclohexyl‐substituted CuBr/ 1e catalytic system [kobs = (1.19 vs 0.56) × 10?4 s?1). The effects of the solvents, temperature, catalyst/initiator, and solvent/monomer ratio on the ATRP of MMA were studied systematically for the CuBr/ 1d catalytic system. The optimum condition for the ATRP of MMA was found to be a 1:2:1:400 [CuBr]o/[ 1d ]o/[ethyl 2‐bromoisobutyrate]o/[MMA]o ratio at 60 °C in veratrole solution, which yielded well‐defined poly(MMA) with a narrow molecular weight distribution of 1.14. The catalytically active copper complex 2d was isolated from the reaction of CuBr with 1d . Narrow molecular weight distributions as low as 1.06 were achieved for the CuBr/ 1d catalytic system by employing 10% of the deactivator CuBr2. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2747–2755, 2004  相似文献   
44.
Poly(pyridine ether)s were prepared in two ways: the polycondensation of silylated 1,1,1‐tris(4‐hydroxyphenyl)ethane (THPE) with 2,6‐difluoropyridine (method A) and the polycondensation of free THPE with 2,6‐dichloropyridine (method B). With method A, the THPE/difluoropyridine feed ratio was varied from 1.0:1.0 to 1.0:1.6. Cycles, bicycles, and multicycles were the main reaction products, and crosslinking was never observed. When ideal stoichiometry was used exclusively, multicycles free of functional groups were obtained. These multicycles were detectable in matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectra up to B38C76 with a mass of approximately 32,000 Da. With method B, the reaction conditions were varied at a fixed feed ratio to achieve an optimum for the preparation of multicyclic polyethers, but because of the lower reactivity of 2,6‐dichloropyridine, a quantitative conversion was not achieved. The reaction products were characterized with MALDI‐TOF mass spectrometry, viscosity measurements, and size exclusion chromatography. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5725–5735, 2004  相似文献   
45.
46.
To develop a greater understanding of interfacial interactions between a semicrystalline polymer and a glassy polymer, adhesion tests were performed on very thin layers of poly(ethylene oxide) (PEO) sandwiched between two layers of poly(tetramethyl bisphenol A polycarbonate) (TMPC). The tests were designed to provide intimate contact between the surfaces while they were heated above the melting point of the PEO and cooled back to room temperature. A contact mechanics approach, based on the Johnson, Kendall, and Roberts theory, was used to determine values of the energy release rate describing the energetic driving force for crack propagation within the interfacial region. The ability to measure crack propagation at large values of the energy release rate was limited by rupture of the silicone elastomer that was used to provide a sufficiently compliant matrix for the adhesion experiment. By cycling the tensile stress at relatively low loading levels, we were able to measure fatigue crack propagation at values of the energy release rate that did not result in failure of the elastomer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3809–3821, 2004  相似文献   
47.
A series of metallodendrimers, assembled by means of bis(terpyridinyl)Ru(II) connectivity on poly(propylene imine) dendrimer scaffolds, with homogeneous or heterogeneous surfaces, were prepared. Differential scanning calorimetry and thermogravimetric analysis were used to determine their thermal behavior, glass‐transition temperatures, and the decomposition kinetics and temperatures; no synergy effects for these properties were observed for the heterogeneously surfaced constructs in contrast to the corresponding homogeneously coated materials, which exhibited different values depending on their surface functionalities. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1487–1495, 2004  相似文献   
48.
The chemical composition of glycosaminoglycan (GAG) hydrogels was found to have a profound effect on the physical properties of gels. Hyaluronan (HA) and chondroitin sulfate (CS) were each modified with adipic dihydrazide (ADH) with carbodiimide chemistry. The resulting polymer was crosslinked with various concentrations of poly(ethylene glycol) dialdehyde (PEG‐diald) to produce a series of hydrogels. The physical properties of these GAG hydrogels varied in a concentration‐dependent fashion. Maximal crosslinking was observed at a theoretical crosslinking of 50% for the HA‐ADH‐PEG‐diald hydrogels and 75% for the CS‐ADH‐PEG‐diald hydrogels. Adding PEG‐diald beyond the optimum for crosslinking prolonged the in vitro enzymatic degradation time of the hydrogels. The swelling of the crosslinked GAG hydrogels was correlated with the amount of PEG‐diald used rather than with the crosslinking density. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4344–4356, 2004  相似文献   
49.
For as‐extruded amorphous and biaxially orientated polyester films based on poly(ethylene terephthalate), poly(ethylene naphthalate), and copolymers containing poly(ethylene terephthalate) and poly(ethylene naphthalate) moieties, permeability, diffusion, and solubility coefficients are interpreted in terms of chain mobility. The influence of polymer morphology is determined by comparison of the data for as‐extruded amorphous sheets and materials produced with different biaxial draw ratios. The crystallinities of the samples were assessed using differential scanning calorimetry and density measurements. Changes in mobility at a molecular level were investigated using dielectric spectroscopy and dynamic mechanical thermal analysis. The study, in conjunction with our earlier work, leads to the conclusion that the key to understanding differences in gas transport is the difference in local chain motions rather than in free volume. This was illustrated by the permeability results for He, Ar, N2, and O2 in the range of polyesters. However, the permeability of CO2 was found to require alternative explanations because of polymer–penetrant interactions. For biaxially oriented samples, the differences in diffusivity are not only due to differences in local chain motions, but also additional constraints resulting from the increased crystallinity and chain rigidity—which also act to hinder segmental mobility. The effectiveness of the reduction in permeability in the biaxially oriented films is consequently determined by the ability of the polymer chains to effectively align and form crystalline structures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2916–2929, 2004  相似文献   
50.
The tetramethoxysilane (TMOS)/2‐hydroxylethyl methacrylate (HEMA) hybrid gels were synthesized with acid and base catalysts, via the in situ polymerization of HEMA, with and without the cosolvent methanol. With methanol in the TMOS/HEMA sol, the enhanced esterification and depolymerization reactions of the silanols resulted in a slower growth of silica particles. The silica particles that were synthesized with an acid catalyst were less than 40 nm. The thermal resistance of the poly(2‐hydroxyethyl methacrylate) (PHEMA) chains was enhanced by the addition of colloidal silica. The Fourier transform infrared characterizations and the exothermal peaks on the differential scanning calorimetry traces of these hybrid gels indicated chemical hybridization occurring as a result of condensation of the colloid silica and PHEMA at higher temperatures. Hence, the residual weight content of the hybrid gel after its synthesis with the base catalyst was even higher than the content of TMOS in the hybrid sol. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3476–3486, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号