首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   415273篇
  免费   3510篇
  国内免费   1262篇
化学   219189篇
晶体学   6471篇
力学   19185篇
综合类   12篇
数学   47302篇
物理学   127886篇
  2020年   3495篇
  2019年   4235篇
  2018年   5631篇
  2017年   5585篇
  2016年   7946篇
  2015年   4616篇
  2014年   7585篇
  2013年   18423篇
  2012年   13772篇
  2011年   16724篇
  2010年   12103篇
  2009年   12137篇
  2008年   15368篇
  2007年   15376篇
  2006年   13969篇
  2005年   12718篇
  2004年   11667篇
  2003年   10535篇
  2002年   10411篇
  2001年   11742篇
  2000年   8833篇
  1999年   6846篇
  1998年   5825篇
  1997年   5877篇
  1996年   5474篇
  1995年   5022篇
  1994年   4945篇
  1993年   4923篇
  1992年   5403篇
  1991年   5577篇
  1990年   5344篇
  1989年   5329篇
  1988年   5319篇
  1987年   5216篇
  1986年   5004篇
  1985年   6625篇
  1984年   6832篇
  1983年   5661篇
  1982年   5918篇
  1981年   5825篇
  1980年   5504篇
  1979年   5890篇
  1978年   6043篇
  1977年   6058篇
  1976年   6293篇
  1975年   5689篇
  1974年   5788篇
  1973年   6126篇
  1972年   4179篇
  1971年   3549篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
51.
In the direct simulation Monte‐Carlo (DSMC) method for simulating rarefied gas flows, the velocities of simulator particles that cross a simulation boundary and enter the simulation space are typically generated using the acceptance–rejection procedure that samples the velocities from a truncated theoretical velocity distribution that excludes low and high velocities. This paper analyses an alternative technique, where the velocities of entering particles are obtained by extending the simulation procedures to a region adjacent to the simulation space, and considering the movement of particles generated within that region during the simulation time step. The alternative method may be considered as a form of acceptance–rejection procedure, and permits the generation of all possible velocities, although the population of high velocities is depleted with respect to the theoretical distribution. Nevertheless, this is an improvement over the standard acceptance–rejection method. Previous implementations of the alternative method gave a number flux lower than the theoretical number required. Two methods for obtaining the correct number flux are presented. For upstream boundaries in high‐speed flows, the alternative method is more computationally efficient than the acceptance–rejection method. However, for downstream boundaries, the alternative method is extremely inefficient. The alternative method, with the correct theoretical number flux, should therefore be used in DSMC computations in favour of the acceptance–rejection method for upstream boundaries in high‐speed flows. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
52.
This paper presents an evaluation of the capability of turbulence models available in the commercial CFD code FLUENT 6.0 for their application to hydrofoil turbulent boundary layer separation flow at high Reynolds numbers. Four widely applied two‐equation RANS turbulence models were assessed through comparison with experimental data at Reynolds numbers of 8.284×106 and 1.657×107. They were the standard k–εmodel, the realizable k–εmodel, the standard k–ωmodel and the shear‐stress‐transport (SST) k–ωmodel. It has found that the realizable k–εturbulence model used with enhanced wall functions and near‐wall modelling techniques, consistently provides superior performance in predicting the flow characteristics around the hydrofoil. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
53.
54.
Preliminary results are reported on the two-particle correlation function R(Q) in hadronic Z decays, fully hadronic WW decays, and mixed hadronic-leptonic WW decays using data collected by the DELPHI detector at LEP at energies between 189 and 206 GeV. Evidence for Bose-Einstein correlations was observed in all three cases. The event mixing technique was used to determine correlations between particles arisingfrom different W bosons in fully hadronic WW decays. An excess of like-sign particle pairs with low four-momentum difference in fully hadronic WW events is observed, consistent with the effect expected from correlations between identical particles from different W bosons.  相似文献   
55.
56.
Camphorquinone (CQ), a widely used photoinitiator (PI) in dental applications, was covalently bonded to aromatic amines to enhance the rate of electron and proton transfer effect due to the close vicinity of the diketone and the amine group. 10‐bromocamphorquinone and 10‐bromomethylcamphorquinone were selected as suitable precursors for esterification with the carboxyl group containing aromatic amines based on 4‐dimethylaminobenzoic acid. Properties of the new photoinitiating systems were investigated by UV spectroscopy and differential scanning photocalorimetry in lauryl acrylate. Compared to physical mixtures, in all cases similar or even better performance was obtained. Surprisingly, 10‐acetyl derivatives 7 – 9 and 18 especially, were found to be highly reactive. Compared to CQ/ethyl 4‐dimethylaminobenzoate, the rate of photopolymerization was increased by a factor of up to 2. Intramolecular reaction was confirmed by photo‐differential scanning calorimetry experiments with varying PI concentrations. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4948–4963, 2004  相似文献   
57.
A monolayer of covalently anchored, novel, binaphthyl ketone is used as a surface‐confined photochemical radical generator (PRG) for anchoring a variety of polymers to silicon surfaces. The precursor PRG is synthesized by the application of a facile and novel method for the oxidation of sterically hindered benzylic hydrocarbons to carbonyl compounds. Oxidation was carried out with a stoichiometric amount of potassium peroxydisulfate, in the presence of a catalytic amount of copper sulfate in an acetonitrile/water mixture. The PRG synthesized is characterized by 1H NMR, UV, and Fourier transform infrared (FTIR). The covalently attached monolayers are characterized by X‐ray photoelectron spectroscopy, ellipsometry, and water contact angle measurements. The method developed is applicable to the preparation of a monolayer of a variety of polymers on a wide range of substrates carrying surface hydroxyl groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5413–5423, 2004  相似文献   
58.
A novel dinitroxide mediating agent that was suitable for stable free‐radical polymerization was synthesized and used in the block copolymerization of styrene and t‐butyl styrene. Quantitative yields of a novel dinitroxide based on 1,6‐hexamethylene diisocyanate and 4‐hydroxy‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy were obtained. Various experimental parameters, including the nitroxide‐to‐initiator molar ratio, were examined, and it was determined that the polymerization was most controlled under conditions similar to those of conventional 2,2,6,6‐tetramethyl‐1‐piperidinyloxy‐mediated stable free‐radical polymerization. Moreover, the dinitroxide mediator proved to be a viable route for the facile two‐step synthesis of triblock copolymers of styrene and t‐butyl styrene. However, the dinitroxide mediation process resulted in a higher than expected level of nitroxide decomposition, which resulted in polymers possessing a terminal alkoxyamine and an adjacent hydroxylamine rather than a preferred internal bisalkoxyamine. This decomposition resulted in the formation of diblock copolymer species during the triblock copolymer synthesis. Gel permeation chromatography was used to monitor the chain‐end decomposition kinetics, and the determined observed rate constant (5.89 × 10?5 s?1) for decomposition agreed well with previous studies for other dinitroxide mediating agents. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1547–1556, 2004  相似文献   
59.
Poly(pyridine ether)s were prepared in two ways: the polycondensation of silylated 1,1,1‐tris(4‐hydroxyphenyl)ethane (THPE) with 2,6‐difluoropyridine (method A) and the polycondensation of free THPE with 2,6‐dichloropyridine (method B). With method A, the THPE/difluoropyridine feed ratio was varied from 1.0:1.0 to 1.0:1.6. Cycles, bicycles, and multicycles were the main reaction products, and crosslinking was never observed. When ideal stoichiometry was used exclusively, multicycles free of functional groups were obtained. These multicycles were detectable in matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectra up to B38C76 with a mass of approximately 32,000 Da. With method B, the reaction conditions were varied at a fixed feed ratio to achieve an optimum for the preparation of multicyclic polyethers, but because of the lower reactivity of 2,6‐dichloropyridine, a quantitative conversion was not achieved. The reaction products were characterized with MALDI‐TOF mass spectrometry, viscosity measurements, and size exclusion chromatography. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5725–5735, 2004  相似文献   
60.
The viscoelastic properties of binary blends of nitrile rubber (NBR) and isotactic polypropylene (PP) of different compositions have been calculated with mean‐field theories developed by Kerner. The phase morphology and geometry have been assumed, and experimental data for the component polymers over a wide temperature range have been used. Hashin's elastic–viscoelastic analogy principle is used in applying Kerner's theory of elastic systems for viscoelastic materials, namely, polymer blends. The two theoretical models used are the discrete particle model (which assumes one component as dispersed inclusions in the matrix of the other) and the polyaggregate model (in which no matrix phase but a cocontinuous structure of the two is postulated). A solution method for the coupled equations of the polyaggregate model, considering Poisson's ratio as a complex parameter, is deduced. The viscoelastic properties are determined in terms of the small‐strain dynamic storage modulus and loss tangent with a Rheovibron DDV viscoelastometer for the blends and the component polymers. Theoretical calculations are compared with the experimental small‐strain dynamic mechanical properties of the blends and their morphological characterizations. Predictions are also compared with the experimental mechanical properties of compatibilized and dynamically cured 70/30 PP/NBR blends. The results computed with the discrete particle model with PP as the matrix compare well with the experimental results for 30/70, 70/30, and 50/50 PP/NBR blends. For 70/30 and 50/50 blends, these predictions are supported by scanning electron microscopy (SEM) investigations. However, for 30/70 blends, the predictions are not in agreement with SEM results, which reveal a cocontinuous blend of the two. Predictions of the discrete particle model are poor with NBR as the matrix for all three volume fractions. A closer agreement of the predicted results for a 70/30 PP/NBR blend and the properties of a 1% maleic anhydride modified PP or 3% phenolic‐modified PP compatibilized 70/30 PP/NBR blend in the lower temperature zone has been observed. This may be explained by improved interfacial adhesion and stable phase morphology. A mixed‐cure dynamically vulcanized system gave a better agreement with the predictions with PP as the matrix than the peroxide, sulfur, and unvulcanized systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1417–1432, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号