全文获取类型
收费全文 | 626473篇 |
免费 | 5499篇 |
国内免费 | 1926篇 |
专业分类
化学 | 319560篇 |
晶体学 | 9466篇 |
力学 | 30342篇 |
综合类 | 16篇 |
数学 | 78921篇 |
物理学 | 195593篇 |
出版年
2021年 | 5221篇 |
2020年 | 5554篇 |
2019年 | 6450篇 |
2018年 | 8674篇 |
2017年 | 8905篇 |
2016年 | 12328篇 |
2015年 | 7122篇 |
2014年 | 11795篇 |
2013年 | 28560篇 |
2012年 | 21407篇 |
2011年 | 25910篇 |
2010年 | 18924篇 |
2009年 | 18967篇 |
2008年 | 23597篇 |
2007年 | 23493篇 |
2006年 | 21656篇 |
2005年 | 19274篇 |
2004年 | 17922篇 |
2003年 | 16011篇 |
2002年 | 16000篇 |
2001年 | 18365篇 |
2000年 | 13889篇 |
1999年 | 10851篇 |
1998年 | 9236篇 |
1997年 | 9085篇 |
1996年 | 8464篇 |
1995年 | 7656篇 |
1994年 | 7441篇 |
1993年 | 7438篇 |
1992年 | 7989篇 |
1991年 | 8364篇 |
1990年 | 8027篇 |
1989年 | 7970篇 |
1988年 | 7687篇 |
1987年 | 7779篇 |
1986年 | 7354篇 |
1985年 | 9614篇 |
1984年 | 9777篇 |
1983年 | 8170篇 |
1982年 | 8547篇 |
1981年 | 8201篇 |
1980年 | 7922篇 |
1979年 | 8359篇 |
1978年 | 8729篇 |
1977年 | 8618篇 |
1976年 | 8872篇 |
1975年 | 8122篇 |
1974年 | 8236篇 |
1973年 | 8591篇 |
1972年 | 6028篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
H. Kaczmarek J. Kowalonek Z. Klusek S. Pierzgalski S. Datta 《Journal of Polymer Science.Polymer Physics》2004,42(4):585-602
The photooxidative degradation of blends (in a full range of compositions) of amorphous poly(vinyl chloride) (PVC) with semicrystalline poly(ethylene oxide) (PEO) in the form of thin films is investigated using absorption spectroscopy (UV–visible and Fourier transform infrared) and atomic force microscopy (AFM). The amount of insoluble gel formed as a result of photocrosslinking is estimated gravimetrically. It is found that the PVC/PEO blendsí susceptibility to photooxidative degradation differs from that pure of the components and depends on the blend composition and morphology. Photoreactions such as degradation and oxidation are accelerated whereas dehydrochlorination is retarded in blends. The photocrosslinking efficiency in PVC/PEO blends is higher than in PVC; moreover, PEO is also involved in this process. AFM images showing the lamellar structure of semicrystalline PEO in the blend lead to the conclusion that the presence of PVC does not disturb the crystallization process of PEO. The changes induced by UV irradiation allow the observation of more of the distinct PEO crystallites. This is probably caused by recrystallization of short, more mobile chains in degraded PEO or by partial removal of the less stable amorphous phase from the film surface. These results confirm previous information on the miscibility of PVC with PEO. The mechanism of the interactions between the components and the blend photodegradation are discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 585–602, 2004 相似文献
92.
K. Y. Sandhya C. K. S. Pillai K. Sree Kumar 《Journal of Polymer Science.Polymer Physics》2004,42(7):1289-1298
New hydrogen‐bonded liquid‐crystalline poly(ester amide)s (PEA)s were obtained from 1,4‐terephthaloyl[bis‐(3‐nitro‐N‐anthranilic acid)] (5) or 1,4‐terephthaloyl[bis‐(N‐anthranilic acid)] (6), with or without nitro groups, respectively, through the separate condensation of each with hydroquinone or dihydroxynaphthalene. The dicarboxylic monomers were synthesized from 2‐aminobenzoic acid. The phase behavior of the monomers and polymers were studied with differential scanning calorimetry, polarized light microscopy, and wide‐angle X‐ray diffraction methods. Monomer 5, containing nitro groups, exhibited a smectic liquid‐crystalline phase, whereas the texture of monomer 6 without nitro groups appeared to be nematic. The PEAs containing nitro groups exhibited polymorphism (smectic and nematic), whereas those without nitro groups exhibited only one phase transition (a nematic threaded texture). The changes occurring in the phase behavior of the polymers were explained by the introduction of nitro groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1289–1298, 2004 相似文献
93.
C. Z. Chuai S. Li K. Almdal J. Alstrup J. Lyngaae‐Jrgensen 《Journal of Polymer Science.Polymer Physics》2004,42(5):898-913
The compatibilization effect of polystyrene (PS)‐poly(dimethylsiloxane) (PDMS) diblock copolymer (PS‐b‐PDMS) and the effect of rheological properties of PS and PDMS on phase structure of PS/PDMS blends were investigated using a selective extraction technique and scanning electron microscopy (SEM). The dual‐phase continuity of PS/PDMS blends takes place in a wide composition range. The formation and the onset of a cocontinuous phase structure largely depend on blend composition, viscosity ratio of the constituent components, and addition of diblock copolymers. The width of the concentration region of the cocontinuous structure is narrowed with increasing the viscosity ratio of the blends and in the presence of the small amount diblock copolymers. Quiescent annealing shifts the onset values of continuity. The experimental results are compared with the volume fraction of phase inversion calculated with various theoretical models, but none of the models can account quantitatively for the observed data. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 898–913, 2004 相似文献
94.
G. G. Bandyopadhyay S. S. Bhagawan K. N. Ninan Sabu Thomas 《Journal of Polymer Science.Polymer Physics》2004,42(8):1417-1432
The viscoelastic properties of binary blends of nitrile rubber (NBR) and isotactic polypropylene (PP) of different compositions have been calculated with mean‐field theories developed by Kerner. The phase morphology and geometry have been assumed, and experimental data for the component polymers over a wide temperature range have been used. Hashin's elastic–viscoelastic analogy principle is used in applying Kerner's theory of elastic systems for viscoelastic materials, namely, polymer blends. The two theoretical models used are the discrete particle model (which assumes one component as dispersed inclusions in the matrix of the other) and the polyaggregate model (in which no matrix phase but a cocontinuous structure of the two is postulated). A solution method for the coupled equations of the polyaggregate model, considering Poisson's ratio as a complex parameter, is deduced. The viscoelastic properties are determined in terms of the small‐strain dynamic storage modulus and loss tangent with a Rheovibron DDV viscoelastometer for the blends and the component polymers. Theoretical calculations are compared with the experimental small‐strain dynamic mechanical properties of the blends and their morphological characterizations. Predictions are also compared with the experimental mechanical properties of compatibilized and dynamically cured 70/30 PP/NBR blends. The results computed with the discrete particle model with PP as the matrix compare well with the experimental results for 30/70, 70/30, and 50/50 PP/NBR blends. For 70/30 and 50/50 blends, these predictions are supported by scanning electron microscopy (SEM) investigations. However, for 30/70 blends, the predictions are not in agreement with SEM results, which reveal a cocontinuous blend of the two. Predictions of the discrete particle model are poor with NBR as the matrix for all three volume fractions. A closer agreement of the predicted results for a 70/30 PP/NBR blend and the properties of a 1% maleic anhydride modified PP or 3% phenolic‐modified PP compatibilized 70/30 PP/NBR blend in the lower temperature zone has been observed. This may be explained by improved interfacial adhesion and stable phase morphology. A mixed‐cure dynamically vulcanized system gave a better agreement with the predictions with PP as the matrix than the peroxide, sulfur, and unvulcanized systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1417–1432, 2004 相似文献
95.
Rachel L. McSwain Alison R. Markowitz Kenneth R. Shull 《Journal of Polymer Science.Polymer Physics》2004,42(20):3809-3821
To develop a greater understanding of interfacial interactions between a semicrystalline polymer and a glassy polymer, adhesion tests were performed on very thin layers of poly(ethylene oxide) (PEO) sandwiched between two layers of poly(tetramethyl bisphenol A polycarbonate) (TMPC). The tests were designed to provide intimate contact between the surfaces while they were heated above the melting point of the PEO and cooled back to room temperature. A contact mechanics approach, based on the Johnson, Kendall, and Roberts theory, was used to determine values of the energy release rate describing the energetic driving force for crack propagation within the interfacial region. The ability to measure crack propagation at large values of the energy release rate was limited by rupture of the silicone elastomer that was used to provide a sufficiently compliant matrix for the adhesion experiment. By cycling the tensile stress at relatively low loading levels, we were able to measure fatigue crack propagation at values of the energy release rate that did not result in failure of the elastomer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3809–3821, 2004 相似文献
96.
Jem‐Kun Chen I‐Kuan Lin Fu‐Hsiang Ko Chih‐Feng Huang Kuo‐Shen Chen Chia‐Hao Chan Feng‐Chih Chang 《Journal of Polymer Science.Polymer Physics》2004,42(22):4063-4074
Polybenzoxazine (PBZZ) thin films can be fabricated by the plasma‐polymerization technique with, as the energy source, plasmas of argon, oxygen, or hydrogen atoms and ions. When benzoxazine (BZZ) films are polymerized through the use of high‐energy argon atoms, electronegative oxygen atoms, or excited hydrogen atoms, the PBZZ films that form possess different properties and morphologies in their surfaces. High‐energy argon atoms provide a thermodynamic factor to initiate the ring‐opening polymerization of BZZ and result in the polymer surface having a grid‐like structure. The ring‐opening polymerization of the BZZ film that is initiated by cationic species such as oxygen atoms in plasma, is propagated around nodule structures to form the PBZZ. The excited hydrogen atom plasma initiates both polymerization and decomposition reactions simultaneously in the BZZ film and results in the formation of a porous structure on the PBZZ surface. We evaluated the surface energies of the PBZZ films polymerized by the action of these three plasmas by measuring the contact angles of diiodomethane and water droplets. The surface roughness of the films range from 0.5 to 26 nm, depending on the type of carrier gas and the plasma‐polymerization time. By estimating changes in thickness, we found that the PBZZ film synthesized by the oxygen plasma‐polymerization process undergoes the slowest rate of etching in CF4 plasma. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4063–4074, 2004 相似文献
97.
A new method for the synthesis of exfoliated graphite and polyaniline (PANI)/graphite nanocomposites was developed. Exfoliated graphite nanosheets were prepared through the microwave irradiation and sonication of synthesized expandable graphite. The nanocomposites were fabricated via the in situ polymerization of the monomer at the presence of graphite nanosheets. The as-synthesized graphite nanosheets and PANI/graphite nanocomposite materials were characterized with Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and thermogravimetric analysis (TGA). The conductivity of the PANI/graphite nanocomposites was dramatically increased over that of pure PANI. TGA indicated that the incorporation of graphite greatly improved the thermal stability of PANI. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1972–1978, 2004 相似文献
98.
A. Zubeldia M. Larraaga P. Remiro I. Mondragon 《Journal of Polymer Science.Polymer Physics》2004,42(21):3920-3933
The microstructure and fracture behavior of epoxy mixtures containing two monomers of different molecular weights were studied. The variation of the fracture toughness by the addition of other modifiers was also investigated. Several amounts of high‐molecular‐weight diglycidyl ether of bisphenol A (DGEBA) oligomer were added to a nearly pure DGEBA monomer. The mixtures were cured with an aromatic amine, showing phase separation after curing. The curing behavior of the epoxy mixtures was investigated with thermal measurements. A significant enhancement of the fracture toughness was accompanied by slight increases in both the rigidity and strength of the mixtures that corresponded to the content of the high‐molecular‐weight epoxy resin. Dynamic mechanical and atomic force microscopy measurements indicated that the generated two‐phase morphology was a function of the content of the epoxy resin added. The influence of the addition of an oligomer or a thermoplastic on the morphologies and mechanical properties of both epoxy‐containing mixtures was also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3920–3933, 2004 相似文献
99.
Shigeyuki Toki Igors Sics Benjamin S. Hsiao Syozo Murakami Masatoshi Tosaka Sirilux Poompradub Shinzo Kohjiya Yuko Ikeda 《Journal of Polymer Science.Polymer Physics》2004,42(6):956-964
The molecular orientation and strain‐induced crystallization of synthetic rubbers—polyisoprene rubber, polybutadiene rubber, and butyl rubber [poly(isobutylene isoprene)]—during uniaxial deformation were studied with in situ synchrotron wide‐angle X‐ray diffraction. The high intensity of the synchrotron X‐rays and the new data analysis method made it possible to estimate the mass fractions of the strain‐induced crystals and amorphous chain segments in both the oriented and unoriented states. Contrary to the conventional concept, the majority of the molecules (50–75%) remained in an unoriented amorphous state at high strains. Each synthetic rubber showed a different behavior of strain‐induced crystallization and molecular orientation during extension and retraction. Our results confirmed the occurence of strain‐induced networks in the synthetic rubbers due to the inhomogeneity of the crosslink distribution. The strain‐induced networks containing microfibrillar crystals and oriented amorphous tie chains were responsible for the ultimate mechanical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 956–964, 2004 相似文献
100.
Seok‐Ho Hwang Kyung Soo Yoo Charles N. Moorefield Sang‐Won Lee George R. Newkome 《Journal of Polymer Science.Polymer Physics》2004,42(8):1487-1495
A series of metallodendrimers, assembled by means of bis(terpyridinyl)Ru(II) connectivity on poly(propylene imine) dendrimer scaffolds, with homogeneous or heterogeneous surfaces, were prepared. Differential scanning calorimetry and thermogravimetric analysis were used to determine their thermal behavior, glass‐transition temperatures, and the decomposition kinetics and temperatures; no synergy effects for these properties were observed for the heterogeneously surfaced constructs in contrast to the corresponding homogeneously coated materials, which exhibited different values depending on their surface functionalities. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1487–1495, 2004 相似文献