首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   401744篇
  免费   4054篇
  国内免费   1435篇
化学   219993篇
晶体学   6408篇
力学   16611篇
综合类   6篇
数学   43371篇
物理学   120844篇
  2018年   3520篇
  2017年   3406篇
  2016年   5671篇
  2015年   3991篇
  2014年   5871篇
  2013年   17623篇
  2012年   12322篇
  2011年   15343篇
  2010年   10166篇
  2009年   10077篇
  2008年   13808篇
  2007年   14001篇
  2006年   13043篇
  2005年   12097篇
  2004年   10951篇
  2003年   9775篇
  2002年   9577篇
  2001年   11717篇
  2000年   8843篇
  1999年   7006篇
  1998年   5695篇
  1997年   5739篇
  1996年   5484篇
  1995年   5119篇
  1994年   4900篇
  1993年   4856篇
  1992年   5567篇
  1991年   5415篇
  1990年   5199篇
  1989年   5225篇
  1988年   5227篇
  1987年   5141篇
  1986年   4832篇
  1985年   6604篇
  1984年   6798篇
  1983年   5574篇
  1982年   6056篇
  1981年   5905篇
  1980年   5692篇
  1979年   5881篇
  1978年   6281篇
  1977年   6025篇
  1976年   6138篇
  1975年   5627篇
  1974年   5652篇
  1973年   5957篇
  1972年   3794篇
  1971年   3030篇
  1968年   3266篇
  1967年   3223篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
The chemical composition of glycosaminoglycan (GAG) hydrogels was found to have a profound effect on the physical properties of gels. Hyaluronan (HA) and chondroitin sulfate (CS) were each modified with adipic dihydrazide (ADH) with carbodiimide chemistry. The resulting polymer was crosslinked with various concentrations of poly(ethylene glycol) dialdehyde (PEG‐diald) to produce a series of hydrogels. The physical properties of these GAG hydrogels varied in a concentration‐dependent fashion. Maximal crosslinking was observed at a theoretical crosslinking of 50% for the HA‐ADH‐PEG‐diald hydrogels and 75% for the CS‐ADH‐PEG‐diald hydrogels. Adding PEG‐diald beyond the optimum for crosslinking prolonged the in vitro enzymatic degradation time of the hydrogels. The swelling of the crosslinked GAG hydrogels was correlated with the amount of PEG‐diald used rather than with the crosslinking density. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4344–4356, 2004  相似文献   
52.
For as‐extruded amorphous and biaxially orientated polyester films based on poly(ethylene terephthalate), poly(ethylene naphthalate), and copolymers containing poly(ethylene terephthalate) and poly(ethylene naphthalate) moieties, permeability, diffusion, and solubility coefficients are interpreted in terms of chain mobility. The influence of polymer morphology is determined by comparison of the data for as‐extruded amorphous sheets and materials produced with different biaxial draw ratios. The crystallinities of the samples were assessed using differential scanning calorimetry and density measurements. Changes in mobility at a molecular level were investigated using dielectric spectroscopy and dynamic mechanical thermal analysis. The study, in conjunction with our earlier work, leads to the conclusion that the key to understanding differences in gas transport is the difference in local chain motions rather than in free volume. This was illustrated by the permeability results for He, Ar, N2, and O2 in the range of polyesters. However, the permeability of CO2 was found to require alternative explanations because of polymer–penetrant interactions. For biaxially oriented samples, the differences in diffusivity are not only due to differences in local chain motions, but also additional constraints resulting from the increased crystallinity and chain rigidity—which also act to hinder segmental mobility. The effectiveness of the reduction in permeability in the biaxially oriented films is consequently determined by the ability of the polymer chains to effectively align and form crystalline structures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2916–2929, 2004  相似文献   
53.
A crystalline δ form of a syndiotactic polystyrene (sPS) membrane was prepared from a solution of sPS (1 wt %) and p‐chlorotoluene (p‐CT) by a solution‐casting method. The mesophase (δ empty form) of sPS was obtained by the extraction of the guest solvent from the δ form of sPS by a stepwise solvent‐extraction method. The sPS/p‐CT mesophase membrane [p‐CT (A‐M)] was used for the sorption of 1 mol % p‐CT for different times and for the sorption of different concentrations of p‐CT, chlorobenzene (CB), p‐xylene (p‐X), toluene, and chloroform for 48 h. The presence of solvents in the sPS membrane was confirmed by IR analysis. A thermal study revealed that the sorption amount of 1 mol % p‐CT increased with increasing immersion time, and the sorption amounts of different solvents increased with increasing solvent concentration. Differential scanning calorimetry results showed that the desorption peak temperature increased as the amount of the solvent increased in the clathrated sPS membrane. Wide‐angle X‐ray diffraction results showed that 2θ at 8.25° was slightly shifted toward 8°, and there was no change in the peak position at 10° for p‐CT (A‐M), which was immersed in different solvents (1 mol %); however, the intensity of 2θ at 10° was not similar for all the samples. Among the solvents used for the sorption studies at 1 mol %, p‐CT (A‐M) could sorb more p‐CT and CB than p‐X, toluene, and chloroform. The solvent sorption isotherm was the Langmuir sorption mechanism. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3439–3446, 2004  相似文献   
54.
The electrochemical reduction of 1-([(4-halophenyl)imino]methyl)-2-naphthols on graphite electrodes was studied using cyclic voltammetry, chronoamperometry, constant-potential coulometry and preparative constant-potential electrolysis techniques. The data revealed that the reduction on graphite was irreversible and followed an EC mechanism. The diffusion coefficients and the number of electrons transferred were determined using the chronoamperometric Cottrell slope and the ultramicro disc Pt-electrode steady-state current. The number of electrons was also determined by bulk electrolysis. The compounds were subjected to constant-potential preparative electrolysis and the electrolysis products were purified and identified by spectroscopic methods. Based on these findings, a mechanism for the electro-reduction process is proposed.  相似文献   
55.
One of the essential differences in the design of bubble pressure tensiometers consists in the geometry of the measuring capillaries. To reach extremely short adsorption times of milliseconds and below, the so-called deadtime of the capillaries must be of the order of some 10 ms. In particular, for concentrated surfactant solutions, such as micellar solutions, short deadtimes are needed to minimize the initial surfactant load of the generated bubbles. A theoretical model is derived and confirmed by experiments performed for a wide range of experimental conditions, mainly in respect to variations in deadtime and bubble volume.  相似文献   
56.
Photon correlation spectroscopy and freeze-fracture electron microscopy have been used to determine the ability of a range of micelle-forming, polyoxyethylene (20) sorbitan monoesters (Tweens) to solubilise vesicles prepared from phosphatidylcholines of different acyl chain lengths and degrees of saturation with a view to rationalising (in terms of their membrane toxicity) which of the micelle-forming surfactants to use as drug delivery vehicles. The phosphatidylcholines used were dimyristoyl-, dipalmitoyl-, distearoyl- and dioleoylphosphatidylcholine (DMPC, DPPC, DSPC and DOPC, respectively) while the nonionic polyoxyethylene sorbitan monoesters studied were polyoxyethylene (20) sorbitan monolaurate (Tween 20), a 9:1 weight ratio mixture of polyoxyethylene (20) sorbitan monopalmitate and monostearate (Tween 40), a 1:1 weight ratio mixture of polyoxyethylene (20) sorbitan monopalmitate and monostearate (Tween 60), and polyoxyethylene (20) sorbitan monooleate (Tween 80). The ability of the Tween micelles to solubilise phospholipid vesicles was found to depend both upon the length of the surfactant acyl chain and the length of the acyl chains of the phospholipid comprising the vesicle. Vesicles composed of long saturated diacyl chain phospholipids, namely DSPC and DPPC, were the most resistant to solubilisation, while those prepared from the shorter acyl chained DMPC were more readily solubilised. In terms of their solubilisation behaviour, vesicles made from phospholipids containing long, unsaturated acyl chains, namely DOPC behaved more akin to those vesicles prepared from DMPC. None of the Tween surfactants were effective at solubilising vesicles prepared from DPPC or DSPC. In contrast, there were clear differences in the ability of the various surfactants to solubilise vesicles prepared from DMPC and DOPC, in that micelles formed from Tween 20 were the most effective solubilising agent while those formed by Tween 60 were the least effective. As a consequence of these observations it was considered that Tween 60 was the surfactant least likely to cause membrane damage in vivo and, therefore, is the most suitable surfactant for use as a micellar drug delivery vehicle.  相似文献   
57.
The desorption behavior of a surfactant in a linear low‐density polyethylene (LLDPE) blend at elevated temperatures of 50, 70, and 80 °C was studied with Fourier transform infrared spectroscopy. The composition of the LLDPE blend was 70:30 LLDPE/low‐density polyethylene. Three different specimens (II, III, and IV) were prepared with various compositions of a small molecular penetrant, sorbitan palmitate (SPAN‐40), and a migration controller, poly(ethylene acrylic acid) (EAA), in the LLDPE blend. The calculated diffusion coefficient (D) of SPAN‐40 in specimens II, III, and IV, between 50 and 80 °C, varied from 1.74 × 10?11 to 6.79 × 10?11 cm2/s, from 1.10 × 10?11 to 5.75 × 10?11 cm2/s, and from 0.58 × 10?11 to 4.75 × 10?11 cm2/s, respectively. In addition, the calculated activation energies (ED) of specimens II, III, and IV, from the plotting of ln D versus 1/T between 50 and 80 °C, were 42.9, 52.7, and 65.6 kJ/mol, respectively. These values were different from those obtained between 25 and 50 °C and were believed to have been influenced by the interference of Tinuvin (a UV stabilizer) at elevated temperatures higher than 50 °C. Although the desorption rate of SPAN‐40 increased with the temperature and decreased with the EAA content, the observed spectral behavior did not depend on the temperature and time. For all specimens stored over 50 °C, the peak at 1739 cm?1 decreased in a few days and subsequently increased with a peak shift toward 1730 cm?1. This arose from the carbonyl stretching vibration of Tinuvin, possibly because of oxidation or degradation at elevated temperatures. In addition, the incorporation of EAA into the LLDPE blend suppressed the desorption rate of SPAN‐40 and retarded the appearance of the 1730 cm?1 peak. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1114–1126, 2004  相似文献   
58.
Syndiotactic polystyrene (sPS) has various crystalline forms such as α, β, γ, and δ forms, and a mesophase depending on the preparation method. In this study, we focused on the mesophase with the molecular cavity of sPS, which is obtained by step‐wise extraction of the guest molecules from the sPS δ form. To prepare the mesophase containing different shapes and sizes of the cavity, two kinds of the sPS δ form membrane cast from either toluene or chloroform solution were first prepared and then the guest molecules were removed by a step‐wise extraction method using acetone and methanol. We could succeed in the preparation of two kinds of mesophase with different shapes and sizes of the molecular cavity. Either toluene or chloroform vapor sorption to the sPS mesophase membranes was examined at 25 °C. Sorption analysis indicates that the mesophase with large molecular cavities can mainly sorb large molecules; on the other hand, the mesophase with small cavities can sorb only the small molecules, and is unable to sorb a large amount of large molecule because the cavity was too small to sorb the large molecules. Therefore, the sPS mesophase membrane has sorption selectivity based on the size of the molecular cavity. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 238–245, 2004  相似文献   
59.
A novel membrane coated platinum-wire electrode (MCPWE) based on N,N'-bis(2-thienylmethylene)-1,2-diaminobenzene (BTMD) for highly selective determination of Ag+ ion has been developed. The influences of membrane composition and pH on the potentiometric responses of electrode were investigated. The potentiometric responses are independent of the pH of the test solution in the range of 5.0 - 9.0. The electrode shows a linear response for Ag+ ion over the concentration range of 1.0 x 10(-60 to 1.0 x 10(-1) M with a lower detection limit of 6.0 x 10(-7) M. The electrode possesses a Nernstian slope of 59.7 mV decade(-1) and a fast response time of < or = 17 s and can be used for at least 2 months without any observable deviation. The proposed electrode displayed very good selectivity for Ag+ ion with respect to NH4+ and alkali, alkaline earth and some common transition metal ions. The practical utility of the electrode has been demonstrated by its use as the indicator electrode in the potentiometric titration of an AgNO3 solution with a NaI solution and in determination of the silver content of a developed radiological film.  相似文献   
60.
The title compound was extracted from a natural product and its structure was characterized by an X-ray diffraction method. It crystallizes in the tetragonal space group P41 with cell parameters a = 15.832(10)A, c = 11.622(10)A, Z = 4; the final residual factor is R1 = 0.0769. The structure has both intra and intermolecular hydrogen bonds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号