首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20221篇
  免费   3294篇
  国内免费   3564篇
化学   15981篇
晶体学   347篇
力学   1159篇
综合类   248篇
数学   2130篇
物理学   7214篇
  2024年   87篇
  2023年   434篇
  2022年   849篇
  2021年   884篇
  2020年   920篇
  2019年   969篇
  2018年   821篇
  2017年   811篇
  2016年   1002篇
  2015年   1008篇
  2014年   1248篇
  2013年   1582篇
  2012年   1760篇
  2011年   1795篇
  2010年   1364篇
  2009年   1265篇
  2008年   1393篇
  2007年   1148篇
  2006年   1080篇
  2005年   1001篇
  2004年   814篇
  2003年   689篇
  2002年   708篇
  2001年   650篇
  2000年   455篇
  1999年   392篇
  1998年   287篇
  1997年   226篇
  1996年   245篇
  1995年   201篇
  1994年   191篇
  1993年   161篇
  1992年   126篇
  1991年   129篇
  1990年   88篇
  1989年   65篇
  1988年   51篇
  1987年   47篇
  1986年   34篇
  1985年   38篇
  1984年   15篇
  1983年   16篇
  1982年   4篇
  1981年   6篇
  1980年   3篇
  1979年   2篇
  1971年   1篇
  1959年   4篇
  1957年   4篇
  1936年   4篇
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
21.
The title compound, 2‐{N‐[2‐(2‐hydroxy­benzamido)ethyl­ammonio­ethyl]amino­carbon­yl}phenolate, C18H21N3O4, crystallizes in a zwitterionic form as a result of inter­molecular proton transfer and possesses a negatively charged phenolate group and a protonated amino group. The 2‐hydroxy­benzamide and 2‐(amino­carbonyl)­phenolate moieties attached to the two ends of the C—C—N—C—C backbone adopt a cis conformation in relation to this backbone. All N‐ and O‐bound H atoms are involved in hydrogen‐bond formation; the zwitterions are first linked into head‐to‐tail dimers, which are further organized into a two‐dimensional network parallel to the crystallographic bc plane.  相似文献   
22.
Trimethylamine n-oxide (TMAO) is a naturally occurring osmolyte that stabilizes proteins and offsets the destabilizing effects of urea. To investigate the molecular mechanism of these effects, we have studied the thermodynamics of interaction between TMAO and protein functional groups. The solubilities of a homologous series of cyclic dipeptides were measured by differential refractive index and the dissolution heats were determined calorimetrically as a function of TMAO concentration at 25 degrees C. The transfer free energy of the amide unit (-CONH-) from water to 1 M TMAO is large and positive, indicating an unfavorable interaction between the TMAO solution and the amide unit. This unfavorable interaction is enthalpic in origin. The interaction between TMAO and apolar groups is slightly favorable. The transfer free energy of apolar groups from water to TMAO consists of favorable enthalpic and unfavorable entropic contributions. This is in contrast to the contributions for the interaction between urea and apolar groups. Molecular dynamics simulations were performed to provide a structural framework for the interpretation of these results. The simulations show enhancement of water structure by TMAO in the form of a slight increase in the number of hydrogen bonds per water molecule, stronger water hydrogen bonds, and long-range spatial ordering of the solvent. These findings suggest that TMAO stabilizes proteins via enhancement of water structure, such that interactions with the amide unit are discouraged.  相似文献   
23.
The vibration spectrum and FAB mass spectrum of (+/-)-1-[3-(2-methoxyphenoxy)-2-hydroxypropyl]-4-[(2,6-dimethylphenyl)aminocarbonylmethyl]piperazine dihydrochloride salt was studied. By comparing with the spectra of free base, different bands of IR were found in the NH+ stretching, the NH+ deformation motion, the CH2 of NCH2 group symmetric stretching, the CH2 of N-CH2 group twisting and the CN stretching. FAB shows the basic peak is M + H. Other m/e peaks are consistent with the structure.  相似文献   
24.
A novel and practical procedure was developed for the abnormal Beckmann rearrangement of steroid 17-oximes. Treatment of the 17-oximes with TFA/CH(OMe)(3) in boiling THF for 2 h gives the corresponding 13,17-seco alkene nitrile products in unprecedented high yields (70-92%). Since the alkene nitriles can be subsequently converted into 18-norsteroids, this general method provides a highly efficient route to these biologically important compounds and, by extension, to other structurally related natural products.  相似文献   
25.
The geometric and electronic structures of FeS(2) (100) surface have been studied by a quantum-mechanical calculation using a total-energy pseudopotential code, CASTEP. The (100) surface is very stable and does not give any significant geometric relaxation. The electronic structure of FeS(2) (100) surface is characterized by the appearance of new native surface states in the bulk band gap, which correspond to antibonding mixed Fea-Ssp(3) states. These surface states play an important role as mediators of electron transfer on both anodic and cathodic sites in the incipient oxidation of pyrite. Moreover, the (100) surface has small band gaps and shows some metallic character. It is predicted that the rate of cathodic reductive reaction of O(2) in the incipient oxidation of pyrite is much faster than previously considered. The transport of electrons from the anodic sites to the cathodic sites on the (100) surface is faster and hole injection of anodic sites is not the rate-determining step. So we can deduce that the rate-determining step of incipient oxidation for pyrite consists of both electron transfer of pyrite/aqueous O(2) interface and the splitting of H(2)O.  相似文献   
26.
以交联甘油环氧树脂交联的聚乙烯醇(PVA)为笼树脂,羧甲基壳聚糖(CCTS)为蛇树脂制备了具有蛇笼结构的复合螯合膜,研究了其对Cu^2 、Ni^2 、Pb^2 、Fe^3 、Zn^2 ,Hg”^2 、Cd^2 等金属离子的吸附性能,研究表明,该树脂对Cu^2 、Ni^2 、Pb^2 有较好的吸附性能,其中PVA是对Cu^2 的吸附的主要贡献者,而CCTS则是在对Ni^2 的吸附中起主要作用。该树脂可以用于含Cu^2 废水的处理。  相似文献   
27.
A novel hydrogen peroxide biosensor was developed based on the immobilization of horseradish peroxidase (HRP) in a TiO(2) sol-gel matrix on an electropolymerized phenazine methosulfate (PMS) modified electrode surface. Such membranes are of interest due to their high surface area, biological compatibility, and ease of fabrication. HRP entrapped in the TiO(2) matix was stable and retained its activity to a large extent. Cyclic voltammetry and amperometric measurements were employed to demonstrate the feasibility of electron transfer between immobilized HRP and the glassy carbon electrode via electropolymerized PMS. The influence of various experimental parameters such as operating potential, pH, temperature, and stability was investigated for optimum analytical performance. The biosensor provided a wide linear calibration range from 4.0x10(-6) M to 1.0x10(-3) M, with a detection limit of 8.0x10(-7) M at a signal-to-noise ratio of 3. The sensor retained 80% of its original activity after two months of operation.  相似文献   
28.
High-energy-density batteries are in urgent need to solve the ever-increasing energy storage demand for portable electronic devices, electric vehicles, and renewable solar and wind energy systems. Alkali metals, typically lithium(Li), sodium(Na) and potassium(K), are considered as the promising anode materials owing to their low electrochemical potential, low density, and high theoretical gravimetric capacities. However, the problem of dendrite growth of alkali metals during their plating/stripping process will lead to low Coulombic efficiencies, a short lifespan and huge volume expansion, eventually hindering their practical commercialization. To resolve this issue, a very effective approach is engineering the anodes on structured current collectors. This review summarizes the development of the alkali metal batteries and discusses the recent advances in rational design of anode current collectors. First, the challenges and strategies of suppressing alkali-metal dendrite growth are presented. Then the special attention is paid to the novel current collector design for dendrite-free alkali metal anodes. Finally, we give conclusions and perspective on the current challenges and future research directions toward advanced anode current collectors for alkali metal batteries.  相似文献   
29.
The electrochemical carbon dioxide reduction reaction (CO2RR) offers a promising solution to mitigate carbon emission and at the same time generate valuable carbonaceous chemicals/fuels. Single atom catalysts (SACs) are encouraging to catalyze the electrochemical CO2RR due to the tunable electronic structure of the central metal atoms, which can regulate the adsorption energy of reactants and reaction intermediates. Moreover, SACs form a bridge between homogeneous and heterogeneous catalysts, providing an ideal platform to explore the reaction mechanism of electrochemical reactions. In this review, we first discuss the strategies for promoting the CO2RR performance, including suppression of the hydrogen evolution reaction (HER), generation of C1 products and formation of C2+ products. Then, we summarize the recent developments in regulating the structure of SACs toward the CO2RR based on the above aspects. Finally, several issues regarding the development of SACs for the CO2RR are raised and possible solutions are provided.

The electrochemical carbon dioxide reduction reaction (CO2RR) offers a promising solution to mitigate carbon emission and at the same time generate valuable carbonaceous chemicals/fuels.  相似文献   
30.
UB3LYP/6-31G(d) and ROMP2/6-311++G(d,2p) methods were used to calculate the Si-X bond dissociation energies (BDEs) of a number of para-substituted aromatic silanes (4-Y-C(6)H(4)-SiH(2)X, where X = H, F, Cl, or Li). It was found that the substituent effect on the Si-H BDE of 4-Y-C(6)H(4)-SiH(3) was small, as the slope (rho(+)()) of the BDE- regression was only 0.09 kJ/mol. In comparison, the substituent effect on the Si-F BDE of 4-Y-C(6)H(4)-SiH(2)F was much stronger, whose rho(+ )()value was -2.34 kJ/mol. The substituent effect on the Si-Cl BDE of 4-Y-C(6)H(4)-SiH(2)Cl was also found to be strong with a rho(+)() value of -1.70 kJ/mol. However, the substituent effect on the Si-Li BDE of 4-Y-C(6)H(4)-SiH(2)Li was found to have a large and positive slope (+9.12 kJ/mol) against. The origin of the above remarkably different substituent effects on the Si-X BDEs was found to be associated with the ability of the substituent to stabilize or destabilize the starting material (4-Y-C(6)H(4)-SiH(2)X) as well as the product (4-Y-C(6)H(4)-SiH(2)* radical) of the homolysis. Therefore, the direction and magnitude of the effects of Y-substituents on the Z-X BDEs in compounds such as 4-YC(6)H(4)Z-X should have some important dependence on the polarity of the Z-X bond undergoing homolysis. This conclusion was in agreement with that from earlier studies (for example, J. Am. Chem. Soc. 1991, 113, 9363). However, it indicated that the proposal from a recent work (J. Am. Chem. Soc. 2001, 123, 5518) was unfortunately not justified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号