首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54011篇
  免费   16934篇
  国内免费   1359篇
化学   61432篇
晶体学   145篇
力学   2638篇
综合类   106篇
数学   3698篇
物理学   4285篇
  2024年   400篇
  2023年   4192篇
  2022年   1768篇
  2021年   2803篇
  2020年   4946篇
  2019年   2678篇
  2018年   2557篇
  2017年   890篇
  2016年   5924篇
  2015年   5874篇
  2014年   5391篇
  2013年   5749篇
  2012年   3950篇
  2011年   1860篇
  2010年   3935篇
  2009年   3886篇
  2008年   1653篇
  2007年   1258篇
  2006年   551篇
  2005年   478篇
  2004年   377篇
  2003年   304篇
  2002年   284篇
  2001年   259篇
  2000年   208篇
  1999年   214篇
  1998年   181篇
  1997年   225篇
  1996年   234篇
  1995年   281篇
  1994年   198篇
  1993年   305篇
  1992年   185篇
  1991年   143篇
  1988年   144篇
  1987年   135篇
  1981年   161篇
  1980年   196篇
  1979年   184篇
  1978年   191篇
  1977年   309篇
  1976年   362篇
  1975年   457篇
  1974年   472篇
  1973年   286篇
  1972年   370篇
  1971年   356篇
  1970年   541篇
  1969年   413篇
  1968年   456篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
201.
A solid state metathesis (SSM) reaction was investigated with respect to the formation of rare‐earth carbodiimides, the role of the co‐produced salt (LiCl), and the eutectic flux medium (LiCl/KCl). A SSM reaction is characterized by an exothermic reaction in which a salt (often LiCl) is coproduced. When the salt melts, it can serve as a useful medium for the crystallization of a desired product. An improved crystal growth can be observed by using an eutectic flux. However, the composition of an eutectic LiCl/KCl flux is altered when LiCl is produced during the reaction. The thermal effects concerning the endothermic melting of the flux and the exothermic ingnition of the SSM reaction may compensate each other, which is not necessarily a drawback for the reaction to proceed.  相似文献   
202.
Abstract. The magnetic behavior of the mononuclear nd1 systems MCp2Cl2 (M = V4+[3d1], Nb4+[4d1], Ta4+[5d1], space group P21/c, pseudosymmetry of the molecules C2v) deviates from pure single ion spin magnetism on account of ligand field effect (Hlf), spin‐orbit coupling (Hso), and intermolecular spin‐spin exchange interactions (Hex). For both VCp2Cl2 and NbCp2Cl2 excellent adaptations to the measured susceptibility data were obtained (2 K ≤ T ≤ 300 K) on the basis of spectroscopic data (lf, so) and cooperative metal–metal interactions (ex) of antiferromagnetic nature [molecular field model (mf)]. For TaCp2Cl2 experimental term structure data are not available. Therefore, Jørgensen's spectroscopical series (g‐factor of the central ion) was applied to extrapolate the data set for TaCp2Cl2. Hlf, Hso, and Hex (antiferromagnetic) increase in the order 3d1 → 4d1 → 5d1 leading, with rising atomic number of the metals, to a distinct enhancement of the magnetic anisotropy. At 4 K the μeff components μeff,y (oriented perpendicular to the cg–M–cg plane; “cg” = center of gravity of the Cp ring), μeff,z (oriented along the twofold pseudoaxis), and μeff,x are 1.73, 1.69, 1.68 (V), 1.73, 1.62, 1.59 (Nb), and 1.71, 1.59, 1.49 (Ta). While μeff,y is independent of T, both μeff,z and μeff,x decrease with decreasing T.  相似文献   
203.
204.
205.
206.
207.
208.
Abstract. A novel germanate compound, |[Ni(dien)2]3(H2O)3|[Ge7O13F5]2(designated JU‐85, dien = diethylenetriamine), was solvothermally synthesized. The structure of JU‐85 was determined by single‐crystal X‐ray diffraction and further characterized by powder X‐ray diffraction, inductively coupled plasma, infrared spectroscopy, elemental analysis, and thermogravimetric analysis. JU‐85 has dissymmetric chains constructed from diagonally linked Ge7 building units and various Ni(dien)22+ complexes formed in situ during the synthesis. Compared with its structural analogue, FJ‐6, JU‐85 contains less complex cations and different host‐guest assembly. Besides the diagonal linkage in JU‐85, other dissymmetric linkages of Ge7 building units were enumerated, which could be used as the stereogenic centers for the design of novel chiral germanate compounds.  相似文献   
209.
210.
The most common mode of bacterial resistance to aminoglycoside antibiotics is the enzyme‐catalysed chemical modification of the drug. Over the last two decades, significant efforts in medicinal chemistry have been focused on the design of non‐ inactivable antibiotics. Unfortunately, this strategy has met with limited success on account of the remarkably wide substrate specificity of aminoglycoside‐modifying enzymes. To understand the mechanisms behind substrate promiscuity, we have performed a comprehensive experimental and theoretical analysis of the molecular‐recognition processes that lead to antibiotic inactivation by Staphylococcus aureus nucleotidyltransferase 4′(ANT(4′)), a clinically relevant protein. According to our results, the ability of this enzyme to inactivate structurally diverse polycationic molecules relies on three specific features of the catalytic region. First, the dominant role of electrostatics in aminoglycoside recognition, in combination with the significant extension of the enzyme anionic regions, confers to the protein/antibiotic complex a highly dynamic character. The motion deduced for the bound antibiotic seem to be essential for the enzyme action and probably provide a mechanism to explore alternative drug inactivation modes. Second, the nucleotide recognition is exclusively mediated by the inorganic fragment. In fact, even inorganic triphosphate can be employed as a substrate. Third, ANT(4′) seems to be equipped with a duplicated basic catalyst that is able to promote drug inactivation through different reactive geometries. This particular combination of features explains the enzyme versatility and renders the design of non‐inactivable derivatives a challenging task.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号