首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1267872篇
  免费   25605篇
  国内免费   7660篇
化学   621702篇
晶体学   19902篇
力学   73384篇
综合类   102篇
数学   236728篇
物理学   349319篇
  2021年   13434篇
  2020年   15845篇
  2019年   15972篇
  2016年   26894篇
  2015年   20436篇
  2014年   30209篇
  2013年   73953篇
  2012年   34001篇
  2011年   27838篇
  2010年   34573篇
  2009年   37588篇
  2008年   28264篇
  2007年   23022篇
  2006年   31527篇
  2005年   22793篇
  2004年   25427篇
  2003年   24779篇
  2002年   26366篇
  2001年   24347篇
  2000年   22297篇
  1999年   21331篇
  1998年   20585篇
  1997年   20632篇
  1996年   20880篇
  1995年   19010篇
  1994年   18434篇
  1993年   17956篇
  1992年   17472篇
  1991年   17828篇
  1990年   17063篇
  1989年   17162篇
  1988年   16685篇
  1987年   16737篇
  1986年   15615篇
  1985年   22093篇
  1984年   23480篇
  1983年   19752篇
  1982年   21497篇
  1981年   20751篇
  1980年   20082篇
  1979年   20086篇
  1978年   21506篇
  1977年   21054篇
  1976年   20716篇
  1975年   19381篇
  1974年   19012篇
  1973年   19489篇
  1972年   14016篇
  1968年   11890篇
  1967年   12271篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
42.
43.
Influence of the nuclear energy structure, the conditions of fuel burnup, and accumulation of new fissile isotopes from the raw isotopes on the main parameters of a closed fuel cycle is considered. The effects of the breeding ratio, the cooling time of the spent fuel in the external fuel cycle, and the separation of the breeding area and the fissile isotope burning area on the parameters of the fuel cycle are analyzed.  相似文献   
44.
45.
46.
47.
ABSTRACT

QM(UB3LYP)/MM(AMBER) calculations were performed for the locations of the transition structure (TS) of the oxygen–oxygen (O–O) bond formation in the S4 state of the oxygen-evolving complex (OEC) of photosystem II (PSII). The natural orbital (NO) analysis of the broken-symmetry (BS) solutions was also performed to elucidate the nature of the chemical bonds at TS on the basis of several chemical indices defined by the occupation numbers of NO. The computational results revealed a concerted bond switching (CBS) mechanism for the oxygen–oxygen bond formation coupled with the one-electron transfer (OET) for water oxidation in OEC of PSII. The orbital interaction between the σ-HOMO of the Mn(IV)4–O(5) bond and the π*-LUMO of the Mn(V)1=O(6) bond plays an important role for the concerted O–O bond formation for water oxidation in the CaMn4O6 cluster of OEC of PSII. One electron transfer (OET) from the π-HOMO of the Mn(V)1=O(6) bond to the σ*-LUMO of the Mn(IV)4–O(5) bond occurs for the formation of electron transfer diradical, where the generated anion radical [Mn(IV)4–O(5)]-? part is relaxed to the ?Mn(III)4?…?O(5)- structure and the cation radical [O(6)=Mn(V)1]+ ? part is relaxed to the +O(6)–Mn(IV)1? structure because of the charge-spin separation for the electron-and hole-doped Mn–oxo bonds. Therefore, the local spins are responsible for the one-electron reductions of Mn(IV)4->Mn(III)4 and Mn(V)1->Mn(IV)1. On the other hand, the O(5)- and O(6)+ sites generated undergo the O–O bond formation in the CaMn4O6 cluster. The Ca(II) ion in the cubane- skeleton of the CaMn4O6 cluster assists the above orbital interactions by the lowering of the orbital energy levels of π*-LUMO of Mn(V)1=O(6) and σ*-LUMO of Mn(IV)4–O(5), indicating an important role of its Lewis acidity. Present CBS mechanism for the O–O bond formation coupled with one electron reductions of the high-valent Mn ions is different from the conventional radical coupling (RC) and acid-base (AB) mechanisms for water oxidation in artificial and native photosynthesis systems. The proton-coupled electron transfer (PC-OET) mechanism for the O–O bond formation is also touched in relation to the CBS-OET mechanism.  相似文献   
48.
In this work, we have used the MuMax3 software to simulate devices consisting of a ferromagnetic thin film placed over a heavy metal thin film. The devices are two interconnected partial-disks where a Néel domain wall is formed in the disks junction. In our simulations we investigate devices with disk radius r=50 nm and different distance d between the disks centers (from d=12 nm to d=2R=100 nm). By applying strong sinusoidal external magnetic fields, we find a mechanism able to create, annihilate and even manipulate a skyrmion in each side of the device. This mechanism is discussed in terms of interactions between skyrmion and domain wall. The Néel domain wall formed in the center of the device interacts with the Néel skyrmion, leading to a process of transporting a skyrmion from one disk to the other periodically. Our results have relevance for potential applications in spintronics such as logical devices.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号