首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   2篇
化学   40篇
晶体学   4篇
数学   10篇
物理学   33篇
  2022年   2篇
  2020年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   6篇
  2010年   1篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   9篇
  1999年   6篇
  1998年   4篇
  1996年   3篇
  1995年   4篇
  1993年   4篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1984年   2篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1968年   1篇
  1939年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
31.
Infrared and Raman spectra were measured for crystalline 6Li- and 7Li-substituted lithium disilicate. The spectra were analysed by normal coordinate analysis (NCA) using a modified valence force field. The resulting force constants were consistent with those calculated for related SiO2-containing phases. The Raman spectral results for related glasses were interpreted with respect to the spectral data for the crystalline phase.  相似文献   
32.
In this paper, we report a novel synthesis of anhydrous 1-hydroxy-2,2,6,6-tetramethyl-piperidine (TEMPO-H). An X-ray crystal structure and full characterization of the compound are included. Compared to hydrated TEMPO-H, its anhydrous form exhibits improved stability and a differing chemical reactivity. The reactions of anhydrous TEMPO-H with a variety of low-valent carbon centres are described. For example, anhydrous TEMPO-H was reacted with 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes), an unsaturated NHC. Crystals of [CHNC(6)H(2)(CH(3))(3)](2)C···HO(NC(5)H(6)(CH(3))(4)), IMes···TEMPO-H, were isolated and a crystal structure determined. The experimental structure is compared to the results of theoretical calculations on the hydrogen-bonded dimer. Anhydrous TEMPO-H was also reacted with the saturated NHC, 1,3-bis(2,6-diisopropylphenyl)imidazolidin-2-ylidene (SIPr), giving the product [CH(2)Ni-Pr(2)C(6)H(3)](2)CH···O(NC(5)H(6)(CH(3))(4)). In contrast, the reaction of hydrated TEMPO-H with 1,3-bis(2,6-diisopropylphenyl)imidazolidin-2-ylidene gave small amounts of the hydrolysis product, N-(2,6-diisopropylphenyl)-N-[2-(2,6-diisopropylphenylamino)ethyl]formamide. Finally, anhydrous TEMPO-H was reacted with (triphenylphosphoranylidene)ketene to generate Ph(3)PC(H)C(=O)O(NC(5)H(6)(CH(3))(4)). A full characterization of the product, including an X-ray crystal structure, is described.  相似文献   
33.
A series of geometry, frequency, and energy calculations of chloroaquazinc(II) complexes were carried out at up to the MP2/6-31+G* level. A thorough examination of all species up to and including hexacoordinate species, and with up to six chlorides, was carried out. The structures of the complexes are compared with experimental data where available. The solution chemistry of zinc(II) in the presence of chloride is discussed, and Raman spectra of zinc perchlorate with increasing amount of chloride are presented.  相似文献   
34.
Carbon-centered strong bases in phosphonium ionic liquids   总被引:1,自引:0,他引:1  
Phosphonium ionic liquids (PhosILs), most notably tetradecyl(trihexyl)phosphonium decanoate (PhosIL-C(9)H(1)9COO), are solvents for bases such as Grignard reagents, isocyanides, Wittig reagents (phosphoranes), and N-heterocyclic carbenes (NHCs). The stability of the organometallic species in PhosIL solution is anion dependent. Small bases, such as hydroxide, react with the phosphonium ions and promote C-H exchange as suggested by deuterium-labeling studies. A method to dry and purify the ionic liquids is described and this step is important for the successful use of basic reagents in PhosIL. NHCs have been generated in PhosIL, and these persistent solutions catalyze organic transformations such as the benzoin condensation and the Kumada-Corriu cross-coupling reaction. Phosphoranes were generated in PhosIL, and their reactivity with various organic reagents was also tested. Inter-ion contacts involving tetraalkylphosphonium ions have been assessed, and the crystal structure of [(n-C(4)H(90)(4)P][CH(3)CO(2).CH(3)CO(2)H] has been determined to aid the discussion. Decomposition of organometallic compounds may also proceed through electron-transfer processes that, inter alia, may lead to decomposition of the IL, and hence the electrochemistry of some representative phosphonium and imidazolium ions has been studied. A radical derived from the electrochemical reduction of an imidazolium ion has been characterized by electron paramagnetic resonance spectroscopy.  相似文献   
35.
36.
Aqueous solutions of Sc(ClO4)3,ScCl3, and Sc2(SO4)3 were studied by Ramanspectroscopy over a wide concentration range. In aqueous perchlorate solutionSc(III) occurs as an hexaaqua cation. The weak, polarized Raman band assignedto the 1(a 1g) ScO6 mode of the hexaaqua-Sc (III) ion has been studied as afunction of concentration and temperature. The 1(a 1g) ScO6 mode at 442 cm–1of the hexaaqua—Sc(III) shifts only 3 cm–1 to lower frequency and broadensabout 20 cm–1 for a 60°C temperature increase. The Raman spectroscopic datasuggest that the hexaaqua-Sc (III) ion is stable in perchlorate solution within theconcentration and temperature range measured. Besides the polarized componentat 442 cm–1, two weak depolarized modes at 295 and 410 cm–1 were measuredin the Raman effect. These two modes of the ScO6 unit were assigned to 3(f 2g)and 2(e ), respectively. The infrared active mode 3(f 1u) was measured at 460cm–1. The frequency data confirm the centrosymmetry of the Sc(III) aquacomplex, contrary to earlier Raman results. The powder spectrum of crystallineSc(ClO4) 3 · 6H2O shows the above described Raman modes as well. Thesefindings are in contrast to Sc2(SO4)3 solutions, where sulfate replaces water inthe first hydration sphere and forms thermodynamically strong sulfato complexes.In ScCl3 solutions thermodynamically weak chloro complexes could be detected.Ab initio molecular orbital calculations were performed at the HF and MP2 levelsof theory using different basis sets up to 6–31 + G(d). Gas-phase structures,binding energies, and enthalpies are reported for the Sc3+(OH2)6 and Sc3+(OH2)7cluster. The Sc—O bond length for the Sc3+(OH2)6 cluster reproduces theexperimentally determined bond length of 2.18 Å (recent EXAFS data) almost exactly.The theoretical binding energy for the hexaaqua Sc(III) ion was calculated andaccounts for ca. 54–59% of the experimental hydration enthalpy of Sc(III). Thethermodynamic stability of the Sc3+(OH2)6(OH2) cluster was compared to thatof the Sc3+(OH2)7 cluster, demonstrating that hexacoordination is inherently morestable than heptacoordination in the scandium (III) system. The calculated 1ScO6frequency of the Sc+(OH2)6 cluster is ca. 12% lower than the experimentalfrequency. Adding an explicit second hydration sphere to give Sc3+ (OH2)18,denoted Sc[6 + 12], is shown to correct for the discrepancy. The frequencycalculation and the thermodynamic parameters for the Sc[6 + 12] cluster aregiven and the importance of the second hydration sphere is stressed. Calculatedfrequencies of the ScO6 subunit in the Sc[6 + 12] cluster agree very well withthe experimental values (for example, the calculated 1ScO6 frequency was foundto be 447 cm–1, in excellent agreement with the above-reported experimentalvalue). The binding enthalpy for the Sc[6 + 12]cluster predicts the single ionhydration enthalpy to about 89%.  相似文献   
37.
38.
There is a growing opinion that the conformational dynamics within HS chains is critical to their observed biological activities. Investigations into HS conformational dynamics are problematic, given the structural complexity and heterogeneity of HS chains. However, this goal will be more obtainable once we understand the important roles HS sequence/sulfation patterns play in determining the conformational dynamics of iduronate units. This is the first study to compare isomers of N-sulfated oligosaccharides, with respect to the conformational versatility of their internal iduronates. Characterization by NMR spectroscopy of two HS oligosaccharides derived from porcine mucosal HS enabled the measurement of iduronate coupling constants, while under the influence of different flanking saccharide sequences. By fitting our coupling constant data to a new set of theoretical coupling constants, calculated using explicit water molecular dynamic simulations, we are able to offer new insights into the role sequence/sulfation patterns play in influencing iduronate conformational behavior. Fitting of experimental data, using our new theoretically derived coupling constants, suggests that replacement of the N-sulfate group to the reducing side of IdoUA by an N-acetyl group has little effect on the balance of IdoUA conformational equilibrium. Fitting of coupling constants for sequences GlcNS-IdoUA(2S)-GlcNS and GlcNS(6S)-IdoUA(2S)-GlcNS suggests that the flanking 6-O-sulfate group alters the balance of the IdoUA(2S) equilibrium more toward the (2)S0 conformation. There is also the suggestion that a cooperative effect may exist for N- and 6-O sulfation. These observations could be the key to understanding the important regulatory function attributed to 6-O-sulfation within HS chains.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号