首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   2篇
  国内免费   4篇
化学   120篇
力学   10篇
数学   36篇
物理学   15篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2018年   1篇
  2017年   6篇
  2016年   6篇
  2014年   2篇
  2013年   8篇
  2012年   12篇
  2011年   12篇
  2010年   8篇
  2009年   17篇
  2008年   19篇
  2007年   9篇
  2006年   11篇
  2005年   5篇
  2004年   4篇
  2003年   8篇
  2002年   8篇
  2001年   6篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   4篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1985年   2篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有181条查询结果,搜索用时 15 毫秒
81.
82.
We study the instability of algebraic solitons for integrable nonlinear equations in one spatial dimension that include modified KdV, focusing NLS, derivative NLS, and massive Thirring equations. We develop the analysis of the Evans function that defines eigenvalues in the corresponding Lax operators with algebraically decaying potentials. The standard Evans function generically has singularities in the essential spectrum, which may include embedded eigenvalues with algebraically decaying eigenfunctions. We construct a renormalized Evans function and study bifurcations of embedded eigenvalues, when an algebraically decaying potential is perturbed by a generic potential with a faster decay at infinity. We show that the bifurcation problem for embedded eigenvalues can be reduced to cubic or quadratic equations, depending on whether the algebraic potential decays to zero or approaches a nonzero constant. Roots of the bifurcation equations define eigenvalues which correspond to nonlinear waves that are formed from unstable algebraic solitons. Our results provide precise information on the transformation of unstable algebraic solitons in the time-evolution problem associated with the integrable nonlinear equation. Algebraic solitons of the modified KdV equation are shown to transform to either travelling solitons or time-periodic breathers, depending on the sign of the perturbation. Algebraic solitons of the derivative NLS and massive Thirring equations are shown to transform to travelling and rotating solitons for either sign of the perturbation. Finally, algebraic homoclinic orbits of the focusing NLS equation are destroyed by the perturbation and evolve into time-periodic space-decaying solutions.  相似文献   
83.
Chromones were reacted with dimethyl acetonedicarboxylate in the presence of DBU in THF at room temperature to furnish good yields of products, their structure depending on the substituent at 3-position. Unsubstituted chromones lead to methyl 7-hydroxy-6-oxo-6H-benzo[c]chromone-8-carboxylates 2, whereas by using 3-bromochromone, the methyl furoate 3c along with the unexpected furylcyclopropyl-chromene carboxylate 4c was isolated. Finally, from 3-formyl-chromones functionalized benzophenones 5 were isolated, in good yields. Plausible mechanisms are proposed.  相似文献   
84.
The employment of pyridine-2-carbaldehyde oxime (paoH) in zinc(II) benzoate chemistry, in the absence or presence of azide ions, is described. The syntheses, crystal structures and spectroscopic characterization are reported for the complexes [Zn(O(2)CPh)(2)(paoH)(2)] (1), [Zn(12)(OH)(4)(O(2)CPh)(16)(pao)(4)] (2) and [Zn(4)(OH)(2)(pao)(4)(N(3))(2)] (3). The Zn(II) centre in octahedral 1 is coordinated by two monodentate PhCO(2)(-) groups and two N,N'-chelating paoH ligands. The metallic skeleton of 2 describes a tetrahedron encapsulated in a distorted cube. The {Zn(12)(μ-OH)(4)(μ(3)-ΟR)(4)}(16+) core of the cluster can be conveniently described as consisting of a central {Zn(4)(μ(3)-ΟR)(4)}(4+) cubane subunit (RO(-) = pao(-)) linked to four {Zn(2)(μ-OH)}(3+) subunits via the OH(-) group of each of the latter, which becomes μ(3). The molecule of 3 has an inverse 12-metallacrown-4 topology. Two triply bridging hydroxido groups are accommodated into the metallacrown ring. Each pao(-) ligand adopts the η(1)?:?η(1)?:?η(1)?:?μ coordination mode, chelating one Zn(II) atom and bridging a Zn(II)(2) pair. Complexes 1 and 2 display photoluminescence with maxima at ~355 nm and ~375 nm, upon maximum excitation at 314 nm; the origin of the photoluminescence is discussed.  相似文献   
85.
Three new linear trinuclear nickel(II) complexes, [Ni3(salpen)2(OAc)2(H2O)2]·4H2O (1) (OAc = acetate, CH3COO), [Ni3(salpen)2(OBz)2] (2) (OBz = benzoate, PhCOO) and [Ni3(salpen)2(OCn)2(CH3CN)2] (4) (OCn = cinnamate, PhCHCHCOO), H2salpen = tetradentate ligand, N,N′-bis(salicylidene)-1,3-pentanediamine have been synthesized and characterized structurally and magnetically. The choice of solvent for growing single crystal was made by inspecting the morphology of the initially obtained solids with the help of SEM study. The magnetic properties of a closely related complex, [Ni3(salpen)2(OPh)2(EtOH)] (3) (OPh = phenyl acetate, PhCH2COO) whose structure and solution properties have been reported recently, has also been studied here. The structural analyses reveal that both phenoxo and carboxylate bridging are present in all the complexes and the three Ni(II) atoms remain in linear disposition. Although the Schiff base ligand and the synsyn bridging bidentate mode of the carboxylate group remain the same in complexes 14, the change of alkyl/aryl group of the carboxylates brings about systematic variations between six- and five-coordination in the geometry of the terminal Ni(II) centres of the trinuclear units. The steric demand as well as hydrophobic nature of the alkyl/aryl group of the carboxylate is found to play a crucial role in the tuning of the geometry. Variable-temperature (2–300 K) magnetic susceptibility measurements show that complexes 14 are antiferromagnetically coupled (J = −3.2(1), −4.6(1), −3.2(1) and −2.8(1) cm−1 in 14, respectively). Calculations of the zero-field splitting parameter indicate that the values of D for complexes 14 are in the high range (D = +9.1(2), +14.2(2), +9.8(2) and +8.6(1) cm−1 for 14, respectively). The highest D value of +14.2(2) and +9.8(2) cm−1 for complexes 2 and 3, respectively, are consistent with the pentacoordinated geometry of the two terminal nickel(II) ions in 2 and one terminal nickel(II) ion in 3.  相似文献   
86.
Vanadium involvement in cellular processes requires deep understanding of the nature and properties of its soluble and bioavailable forms arising in aqueous speciations of binary and ternary systems. In an effort to understand the ternary vanadium-H(2)O(2)-ligand interactions relevant to that metal ion's biological role, synthetic efforts were launched involving the physiological ligands betaine (Me(3)N(+)CH(2)CO(2)(-)) and H(2)O(2). In a pH-specific fashion, V(2)O(5), betaine, and H(2)O(2) reacted and afforded three new, unusual, and unique compounds, consistent with the molecular formulation K(2)[V(2)O(2)(O(2))(4){(CH(3))(3)NCH(2)CO(2))}]·H(2)O (1), (NH(4))(2)[V(2)O(2)(O(2))(4){(CH(3))(3)NCH(2)CO(2))}]·0.75H(2)O (2), and {Na(2)[V(2)O(2)(O(2))(4){(CH(3))(3)NCH(2)CO(2))}(2)]}(n)·4nH(2)O (3). All complexes 1-3 were characterized by elemental analysis; UV/visible, FT-IR, Raman, and NMR spectroscopy in solution and the solid state; cyclic voltammetry; TGA-DTG; and X-ray crystallography. The structures of 1 and 2 reveal the presence of unusual ternary dinuclear vanadium-tetraperoxido-betaine complexes containing [(V(V)═O)(O(2))(2)] units interacting through long V-O bonds. The two V(V) ions are bridged through the oxygen terminal of one of the peroxide groups bound to the vanadium centers. The betaine ligand binds only one of the two V(V) ions. In the case of the third complex 3, the two vanadium centers are not immediate neighbors, with Na(+) ions (a) acting as efficient oxygen anchors and through Na-O bonds holding the two vanadium ions in place and (b) providing for oxygen-containing ligand binding leading to a polymeric lattice. In 1 and 3, interesting 2D (honeycomb) and 1D (zigzag chains) topologies of potassium nine-coordinate polyhedra (1) and sodium octahedra (3), respectively, form. The collective physicochemical properties of the three ternary species 1-3 project the chemical role of the low molecular mass biosubstrate betaine in binding V(V)-diperoxido units, thereby stabilizing a dinuclear V(V)-tetraperoxido dianion. Structural comparisons of the anions in 1-3 with other known dinuclear V(V)-tetraperoxido binary anionic species provide insight into the chemical reactivity of V(V)-diperoxido systems and their potential link to cellular events such as insulin mimesis and anitumorigenicity modulated by the presence of betaine.  相似文献   
87.
The interaction of ZnCl(2) with 2-dipyridylketonoxime (=Hpko) and flufenamic acid (=Hfluf) in a basic methanolic solution leads to the formation of a hexanuclear 24-membered metallacoronate, [Zn(6)(OH)(2)(pko)(4)(fluf)(6)] (1), with a [Zn-O-C-O] repeat unit and a nonsteroidal antiinflammatory drug as the constructing ligand. Compound 1 retains its structure in a dimethyl sulfoxide solution, as shown by (1)H NMR spectroscopy and molar conductance.  相似文献   
88.
Complexes [Fe(Hhbi)(2)(NO(3))].2EtOH (1.2EtOH) and [Fe(2)(mu-OH)(2)(Hhbi)(4)].2H(2)O.8EtOH (2.2H(2)O.8EtOH) crystallize in the orthorhombic Fdd2 and P4(2)2(1)2 space groups, respectively (Hhbi(-) = the monoanion of 2-(2'-hydroxyphenyl benzimidazole). Complex 1 exhibits paramagnetic relaxation as evidenced by Mossbauer spectroscopy, and significant axial zero-field splitting (1.5 cm(1) 相似文献   
89.
Complex [Ni 5{pyCOpyC(O)(OMe)py} 2(O 2CMe) 4(N 3) 4(MeOH) 2].2MeOH.2.6H 2O ( 1.2MeOH.2.6H 2O) was synthesized by the reaction of Ni(O 2CMe) 2.4H 2O with pyCOpyCOpy and NaN 3 in refluxing MeOH. It crystallizes in the monoclinic C2/ c space group and consists of five Ni (II) atoms in a helical arrangement. Direct current magnetic susceptibility studies reveal ferromagnetic interactions between the Ni (II) ( S = 1) ions, stabilizing an S = 5 ground state. Alternating current susceptibility experiments revealed the existence of out-of-phase signals indicative of slow magnetic relaxation. Analysis of the signals showed that they are composite, suggesting more than one relaxation process, while analysis of their magnitudes suggests not all molecules undergo slow magnetic relaxation. Magnetization field-sweep experiments revealed hysteresis at 1.8 K, and magnetization decay experiments clearly verified the appearance of slow magnetic relaxation at that temperature.  相似文献   
90.
Abstract

The glycosylation reaction based upon anomeric free hydroxyl group activation by its transformation into an alkcxyiminium salt by the action of the N,N-dimethylformamide/phosgene complex has been extended to the pentofuranose series. The mechanism of this glycosylation is discussed. Nine glycosides have been prepared.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号