首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41428篇
  免费   15805篇
  国内免费   59篇
化学   53921篇
晶体学   48篇
力学   1155篇
数学   1444篇
物理学   724篇
  2024年   422篇
  2023年   4246篇
  2022年   1427篇
  2021年   2432篇
  2020年   4709篇
  2019年   2243篇
  2018年   2395篇
  2017年   620篇
  2016年   5569篇
  2015年   5530篇
  2014年   4972篇
  2013年   5126篇
  2012年   3144篇
  2011年   1116篇
  2010年   3374篇
  2009年   3302篇
  2008年   1116篇
  2007年   806篇
  2006年   214篇
  2005年   172篇
  2004年   140篇
  2003年   146篇
  2002年   128篇
  1997年   71篇
  1996年   73篇
  1995年   129篇
  1994年   82篇
  1993年   196篇
  1992年   84篇
  1991年   66篇
  1988年   83篇
  1987年   66篇
  1985年   61篇
  1984年   74篇
  1983年   70篇
  1982年   81篇
  1981年   93篇
  1980年   111篇
  1979年   102篇
  1978年   107篇
  1977年   170篇
  1976年   188篇
  1975年   193篇
  1974年   204篇
  1973年   118篇
  1972年   158篇
  1971年   123篇
  1970年   209篇
  1969年   129篇
  1968年   142篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Anion-π catalysis operates by stabilizing anionic transition states on π-acidic aromatic surfaces. In anion-(π)n-π catalysis, π stacks add polarizability to strengthen interactions. In search of synthetic methods to extend π stacks beyond the limits of foldamers, the self-assembly of micelles from amphiphilic naphthalenediimides (NDIs) is introduced. To interface substrates and catalysts, charge-transfer complexes with dialkoxynaphthalenes (DANs), a classic in supramolecular chemistry, are installed. In π-stacked micelles, the rates of bioinspired ether cyclizations exceed rates on monomers in organic solvents by far. This is particularly impressive considering that anion-π catalysis in water has been elusive so far. Increasing rates with increasing π acidity of the micelles evince operational anion-(π)n-π catalysis. At maximal π acidity, autocatalytic behavior emerges. Dependence on position and order in confined micellar space promises access to emergent properties. Anion-(π)n-π catalytic micelles in water thus expand supramolecular systems catalysis accessible with anion-π interactions with an inspiring topic of general interest and great perspectives.  相似文献   
62.
Cyclodextrins are widely used as carriers of small molecules for drug delivery owing to their remarkable host properties and excellent biocompatibility. However, cyclic oligosaccharides with different sizes and shapes are limited. Cycloglycosylation of ultra-large bifunctional saccharide precursors is challenging due to the constrained conformational spaces. Herein we report a promoter-controlled cycloglycosylation approach for the synthesis of cyclic α-(1→6)-linked mannosides up to a 32-mer. Cycloglycosylation of the bifunctional thioglycosides and (Z)-ynenoates was found to be highly dependent on the promoters. In particular, a sufficient amount of a gold(I) complex played a key role in the proper preorganization of the ultra-large cyclic transition state, providing a cyclic 32-mer polymannoside, which represents the largest synthetic cyclic polysaccharide to date. NMR experiments and a computational study revealed that the cyclic 2-mer, 4-mer, 8-mer, 16-mer, and 32-mer mannosides adopted different conformational states and shapes.  相似文献   
63.
Decarboxylative halogenation reactions of alkyl carboxylic acids are highly valuable reactions for the synthesis of structurally diverse alkyl halides. However, many reported protocols rely on stoichiometric strong oxidants or highly electrophilic halogenating agents. Herein, we describe visible-light photoredox-catalyzed decarboxylative halogenation reactions of N-hydroxyphthalimide-activated carboxylic acids that avoid stoichiometric oxidants and use inexpensive inorganic halide salts as the halogenating agents. Bromination with lithium bromide proceeds under simple, transition-metal-free conditions using an organic photoredox catalyst and no other additives, whereas dual photoredox-copper catalysis is required for chlorination with lithium chloride. The mild conditions display excellent functional-group tolerance, which is demonstrated through the transformation of a diverse range of structurally complex carboxylic acid containing natural products into the corresponding alkyl bromides and chlorides. In addition, we show the generality of the dual photoredox-copper-catalyzed decarboxylative functionalization with inorganic salts by extension to thiocyanation with potassium thiocyanide, which was applied to the synthesis of complex alkyl thiocyanates.  相似文献   
64.
Herein, we report a copper-catalyzed stereospecific fluorination involving CsF and α-bromocarboxamides as tertiary alkyl sources that, unlike traditional stereospecific routes involving stereoinversive SN2 reactions, proceeds with retention of stereochemistry. The developed stereospecific Cu-catalyzed reaction is among the most efficient methods for synthesizing fluorinated molecules that possess highly congested stereogenic carbon centers. Mechanistic studies revealed that the combined reactivity of CuF2 and Cs salt is essential for completing the catalytic cycle. Our catalytic system underwent fluorination exclusively with tertiary alkyl bromides and did not react with primary alkyl bromides, indicating that this stereospecific fluorination methodology is suitable for synthesizing fluorinated building blocks possessing stereo-defined F-containing tertiary carbon stereogenic center.  相似文献   
65.
A series of mesoionic, 1,2,3-triazole-derived N-heterocyclic olefins (mNHOs), which have an extraordinarily electron-rich exocyclic CC-double bond, was synthesized and spectroscopically characterized, in selected cases by X-ray crystallography. The kinetics of their reactions with arylidene malonates, ArCH=C(CO2Et)2, which gave zwitterionic adducts, were investigated photometrically in THF at 20 °C. The resulting second-order rate constants k2(20 °C) correlate linearly with the reported electrophilicity parameters E of the arylidene malonates (reference electrophiles), thus providing the nucleophile-specific N and sN parameters of the mNHOs according to the correlation lg k2(20 °C)=sN(N+E). With 21<N<32, the mNHOs are much stronger nucleophiles than conventional NHOs. Some mNHOs even excel the reactivity of mono- and diacceptor-substituted carbanions. It is exemplarily shown that the reactivity parameters thus obtained allow to calculate the rate constants for mNHO reactions with further Michael acceptors and predict the scope of reactions with other electrophilic reaction partners including carbon dioxide, which gives zwitterionic mNHO-carboxylates. The nucleophilicity parameters N correlate linearly with a linear combination of the quantum-chemically calculated methyl cation affinities and buried volumes of mNHOs, which offers a valuable tool to tailor the reactivities of strong carbon nucleophiles.  相似文献   
66.
Self-assembled monolayers (SAMs) offer the advantage of facile interfacial modification, leading to significant improvements in device performance. In this study, we report the design and synthesis of a new series of carboxylic acid-functionalized porphyrin derivatives, namely AC-1, AC-3, and AC-5, and present, for the first time, a strategy to exploit the large π-moiety of porphyrins as a backbone for interfacing the indium tin oxide (ITO) electrode and perovskite active layer in an inverted perovskite solar cell (PSC) configuration. The electron-rich nature of porphyrins facilitates hole transfer and the formation of SAMs, resulting in a dense surface that minimizes defects. Comprehensive spectroscopic and dynamic studies demonstrate that the double-anchored AC-3 and AC-5 enhance SAMs on ITO, passivate the perovskite layer, and function as conduits to facilitate hole transfer, thus significantly boosting the performance of PSCs. The champion inverted PSC employing AC-5 SAM achieves an impressive solar efficiency of 23.19 % with a high fill factor of 84.05 %. This work presents a novel molecular engineering strategy for functionalizing SAMs to tune the energy levels, molecular dipoles, packing orientations to achieve stable and efficient solar performance. Importantly, our comprehensive investigation has unraveled the associated mechanisms, offering valuable insights for future advancements in PSCs.  相似文献   
67.
Harnessing the potential of thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) is crucial for developing light-emitting diodes (LEDs), lasers, sensors, and many others. However, effective strategies in this domain are still relatively scarce. This study presents a new approach to achieving highly efficient deep-blue TADF (with a PLQY of 25 %) and low-energy orange RTP (with a PLQY of 90 %) through the fabrication of lead-free hybrid halides. This new class of monomeric and dimeric 0D antimony halides can be facilely synthesized using a bottom-up solution process, requiring only a few seconds to minutes, which offer exceptional stability and nontoxicity. By leveraging the highly adaptable molecular arrangement and crystal packing modes, the hybrid antimony halides demonstrate the ability to self-assemble into regular 1D microrod and 2D microplate morphologies. This self-assembly is facilitated by multiple non-covalent interactions between the inorganic cores and organic shells. Notably, these microstructures exhibit outstanding polarized luminescence and function as low-dimensional optical waveguides with remarkably low optical-loss coefficients. Therefore, this work not only presents a pioneering demonstration of deep-blue TADF in hybrid antimony halides, but also introduces 1D and 2D micro/nanostructures that hold promising potential for applications in white LEDs and low-dimensional photonic systems.  相似文献   
68.
Unprecedented opportunities exist for the generation of advanced nanotechnologies based on synthetic micro/nanomotors (MNMs), such as active transport of medical agents or the removal of pollutants. In this regard, great efforts have been dedicated toward controlling MNM motion (e.g., speed, directionality). This was generally performed by precise engineering and optimizing of the motors′ chassis, engine, powering mode (i.e., chemical or physical), and mechanism of motion. Recently, new insights have emerged to control motors mobility, mainly by the inclusion of different modes that drive propulsion. With high degree of synchronization, these modes work providing the required level of control. In this Minireview, we discuss the diverse factors that impact motion; these include MNM morphology, modes of mobility, and how control over motion was achieved. Moreover, we highlight the main limitations that need to be overcome so that such motion control can be translated into real applications.  相似文献   
69.
The evolution of prenucleation clusters in the prenucleation stage of colloidal semiconductor quantum dots (QDs) has remained unexplored. With CdTe as a model system, we show that substances form and isomerize prior to the nucleation and growth of QDs. Called precursor compounds (PCs), the prenucleation clusters are relatively optically transparent and can transform to absorbing magic-size clusters (MSCs). When a prenucleation-stage sample at 25, 45, or 80 °C is dispersed in a mixture of cyclohexane (CH) and octylamine (OTA) at room temperature, either MSC-371, MSC-417, or MSC-448 evolves with absorption peaking at 371, 417, or 448 nm, respectively. We propose that PC-371 forms at 25 °C, and isomerizes to PC-417 at 45 °C and to PC-448 at 80 °C. The PCs and MSCs are quasi isomers. Relatively large and small amounts of OTA favor PC-371 and PC-448 in dispersion, respectively. The present findings suggest the existence of PC-to-PC isomerization in the QD prenucleation stage.  相似文献   
70.
Catalytic methods which control multiple stereogenic centers simultaneously are highly desirable in modern organic synthesis and chemical manufacturing. Herein, we report a regio-, enantio-, and diastereoselective NiH-catalyzed hydroalkylation process which proceeds with simultaneous control of vicinal stereocenters originating from two readily accessible partners, prochiral internal alkenes (enamides or enecarbamates) and racemic alkyl electrophiles (α-bromoamides or Katritzky salts). This reaction produces high-value β-aminoamides and their derivatives under mild conditions and with precise selectivity. Preliminary studies of the mechanism indicate that the reaction involves an enantioselective syn-hydronickelation to generate an enantiomerically enriched alkylnickel(II) species. Subsequent enantioconvergent alkylation with a racemic alkyl electrophile generates the desired product as a single stereoisomer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号