首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40578篇
  免费   15776篇
  国内免费   56篇
化学   53273篇
晶体学   31篇
力学   1108篇
数学   1286篇
物理学   712篇
  2024年   423篇
  2023年   4242篇
  2022年   1398篇
  2021年   2402篇
  2020年   4667篇
  2019年   2217篇
  2018年   2375篇
  2017年   600篇
  2016年   5540篇
  2015年   5507篇
  2014年   4925篇
  2013年   5060篇
  2012年   3053篇
  2011年   1005篇
  2010年   3340篇
  2009年   3276篇
  2008年   1042篇
  2007年   725篇
  2006年   141篇
  2005年   128篇
  2004年   101篇
  2003年   98篇
  2002年   69篇
  1996年   75篇
  1995年   126篇
  1994年   86篇
  1993年   198篇
  1992年   76篇
  1991年   70篇
  1989年   63篇
  1988年   81篇
  1987年   69篇
  1985年   66篇
  1984年   76篇
  1983年   76篇
  1982年   94篇
  1981年   110篇
  1980年   126篇
  1979年   114篇
  1978年   117篇
  1977年   186篇
  1976年   195篇
  1975年   199篇
  1974年   205篇
  1973年   125篇
  1972年   159篇
  1971年   127篇
  1970年   209篇
  1969年   127篇
  1968年   135篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Since gold clusters have mostly been studied theoretically by using DFT calculations, more accurate studies are of importance. Thus, small neutral and anionic gold clusters (Aun and Aun?, n=4–7) were investigated by means of coupled cluster with singles, doubles, and perturbative triple excitations [CCSD(T)] calculations with large basis sets, and some differences between DFT and CCSD(T) results are discussed. Interesting isomeric structures that have dangling atoms were obtained. Structures having dangling atoms appear to be stable up to n=4 for neutral gold clusters and up to n=7 for anionic clusters. The relative stabilities and electronic properties of some isomers and major structures are discussed on the basis of the CCSD(T) calculations. This accurate structure prediction of small gold clusters corresponding to experimental photoelectron spectral peaks is valuable in the field of atom‐scale materials science including nanocatalysts.  相似文献   
962.
α,β‐Unsaturated esters have been employed as substrates in iridium‐catalyzed asymmetric hydrogenation. Full conversions and good to excellent enantioselectivities (up to 99 % ee) were obtained for a broad range of substrates with both aromatic‐ and aliphatic substituents on the prochiral carbon. The hydrogenated products are highly useful as building blocks in the synthesis of a variety of natural products and pharmaceuticals.  相似文献   
963.
Covalently linked vancomycin dimers have attracted a great deal of attention among researchers because of their enhanced antibacterial activity against vancomycin‐resistant strains. However, the lack of a clear insight into the mechanisms of action of these dimers hampers rational optimization of their antibacterial potency. Here, we describe the synthesis and antibacterial activity of novel vancomycin dimers with a constrained molecular conformation achieved by two tethers between vancomycin units. Conformational restriction is a useful strategy for studying the relationship between the molecular topology and biological activity of compounds. In this study, two vancomycin units were linked at three distinct positions of the glycopeptide (vancosamine residue (V), C terminus (C), and N terminus (N)) to form two types of novel vancomycin cyclic dimers. Active NC‐VV‐linked dimers with a stable conformation as indicated by molecular mechanics calculations selectively suppressed the peptidoglycan polymerization reaction of vancomycin‐resistant Staphylococcus aureus in vitro. In addition, double‐disk diffusion tests indicated that the antibacterial activity of these dimers against vancomycin‐resistant enterococci might arise from the inhibition of enzymes responsible for peptidoglycan polymerization. These findings provide a new insight into the biological targets of vancomycin dimers and the conformational requirements for efficient antibacterial activity against vancomycin‐resistant strains.  相似文献   
964.
1H NMR exchange spectroscopy of a reaction mixture of [Cp*Ir(H)4] ( 1 ; Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl) and ammonia suggests an exchange of hydrogen atoms between the hydrido ligands and ammonia. Treatment of 1 with ND3 led to an H/D exchange between ND3 and the hydrido ligands of 1 . Subsequent studies showed that photolysis of 1 isolated in frozen argon matrices leads to the formation of the iridium compounds [Cp*Ir(H)2] ( 2 ) and [Cp*Ir(H)3] ( 4 ), as it was confirmed by IR spectroscopy. In the presence of water the aqua complex [Cp*Ir(H)2(OH2)] ( 3 ) was generated simultaneously. Accordingly, photolysis of 1 in an argon matrix doped with ammonia gave rise to the ammine complex [Cp*Ir(H)2(NH3)] ( 5 ). IR assignments were supported by calculations of the gas‐phase IR spectra of 1 – 5 by DFT methods.  相似文献   
965.
966.
In this work, we describe a palladium‐catalyzed intermolecular O acylation of α‐diazoesters with ortho‐bromobenzaldehydes. The C(sp2)?H bond activation of the aldehyde is enabled by migratory insertion of a palladium carbene intermediate. The diazoesters act as modular three‐atom units to build up key seven‐membered palladacycles, which are transformed into a variety of isocoumarin derivatives upon reductive elimination. Mechanistic experiments and DFT calculations provide insight into the reaction pathway.  相似文献   
967.
The hydrogen evolution reaction (HER) is a fundamental process in electrocatalysis and plays an important role in energy conversion for the development of hydrogen‐based energy sources. However, the considerably slow rate of the HER in alkaline conditions has hindered advances in water splitting techniques for high‐purity hydrogen production. Differing from well documented acidic HER, the mechanistic aspects of alkaline HER are yet to be settled. A critical appraisal of alkaline HER electrocatalysis is presented, with a special emphasis on the connection between fundamental surface electrochemistry on single‐crystal models and the derived molecular design principle for real‐world electrocatalysts. By presenting some typical examples across theoretical calculations, surface characterization, and electrochemical experiments, we try to address some key ongoing debates to deliver a better understanding of alkaline HER at the atomic level.  相似文献   
968.
Early detection of skin diseases is imperative for their effective treatment. However, fluorescence molecular probes that allow this are rare. The first activatable near‐infrared (NIR) fluorescent molecular probe is reported for sensitive imaging of keloid cells, skin cells from abnormal scar fibrous lesions. As keloid cells have high expression levels of fibroblast activation protein‐alpha (FAPα), the probe (FNP1) is designed to have a caged NIR dye and a FAPα‐cleavable peptide substrate linked by a self‐immolative segment. FNP1 can quickly and specifically turn on its fluorescence at 710 nm by 45‐fold in the presence of FAPα, allowing it to effectively recognize keloid cells from normal skin cells. Integration of FNP1 with a simple microneedle‐assisted topical application enables sensitive detection of keloid cells in metabolically‐active human skin tissue with a theoretical limit of detection down to 20 000 cells.  相似文献   
969.
Sesterterpenoids are a relatively rare class of plant terpenes. Sesterterpene synthase (STS)‐mediated cyclization of the linear C25 isoprenoid precursor geranylfarnesyl diphosphate (GFPP) defines sesterterpene scaffolds. So far only a very limited number of STSs have been characterized. The discovery of three new plant STSs is reported that produce a suite of sesterterpenes with unprecedented 6/11/5 and 6/6/7/5 fused ring systems when transiently co‐expressed with a GFPP synthase in Nicotiana benthamiana. Structural elucidation, feeding experiments, and quantum chemical calculations suggest that these STSs catalyze an unusual cyclization path involving reprotonation, intramolecular 1,6 proton transfer, and concerted but asynchronous bicyclization events. The cyclization is diverted from those catalyzed by the characterized plant STSs by forming unified 15/5 bicyclic sesterterpene intermediates. Mutagenesis further revealed a conserved amino acid residue implicated in reprotonation.  相似文献   
970.
A new route to lactide, which is a key building block of the bioplastic polylactic acid, is proposed involving a continuous catalytic gas‐phase transesterification of renewable alkyl lactates in a scalable fixed‐bed setup. Supported TiO2/SiO2 catalysts are highly selective to lactide, with only minimal lactide racemization. The solvent‐free process allows for easy product separation and recycling of unconverted alkyl lactates and recyclable lactyl intermediates. The catalytic activity of TiO2/SiO2 catalysts was strongly correlated to their optical properties by DR UV/Vis spectroscopy. Catalysts with high band‐gap energy of the supported TiO2 phase, indicative of a high surface spreading of isolated Ti centers, show the highest turnover frequency per Ti site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号