全文获取类型
收费全文 | 43632篇 |
免费 | 15799篇 |
国内免费 | 77篇 |
专业分类
化学 | 55471篇 |
晶体学 | 66篇 |
力学 | 1199篇 |
数学 | 1643篇 |
物理学 | 1129篇 |
出版年
2024年 | 423篇 |
2023年 | 4251篇 |
2022年 | 1413篇 |
2021年 | 2429篇 |
2020年 | 4705篇 |
2019年 | 2257篇 |
2018年 | 2390篇 |
2017年 | 628篇 |
2016年 | 5609篇 |
2015年 | 5538篇 |
2014年 | 4976篇 |
2013年 | 5183篇 |
2012年 | 3248篇 |
2011年 | 1237篇 |
2010年 | 3439篇 |
2009年 | 3350篇 |
2008年 | 1213篇 |
2007年 | 926篇 |
2006年 | 375篇 |
2005年 | 301篇 |
2004年 | 251篇 |
2003年 | 253篇 |
2002年 | 208篇 |
1997年 | 92篇 |
1996年 | 124篇 |
1995年 | 146篇 |
1994年 | 108篇 |
1993年 | 224篇 |
1992年 | 87篇 |
1991年 | 94篇 |
1988年 | 114篇 |
1987年 | 83篇 |
1985年 | 103篇 |
1984年 | 116篇 |
1983年 | 97篇 |
1982年 | 133篇 |
1981年 | 144篇 |
1980年 | 157篇 |
1979年 | 137篇 |
1978年 | 147篇 |
1977年 | 208篇 |
1976年 | 217篇 |
1975年 | 223篇 |
1974年 | 228篇 |
1973年 | 144篇 |
1972年 | 168篇 |
1971年 | 129篇 |
1970年 | 214篇 |
1969年 | 129篇 |
1968年 | 143篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Prof. Dr. H. G. Kilian 《Colloid and polymer science》1977,255(8):740-754
Summary A thermodynamic treatment of homo-polymer systems out of linear chains with folded chain crystals is developed outgoing from appropriate models for single component systems. An expansion of thermodynamics to multi-micro-phase systems the structure of which is partially or totaly frozen is indispensable. General properties of melt crystallized homopolymers with folded chain crystals can be recognized indeed when the thermodynamic formalisms developed are applied.
Notation g c (y);g m (Y) molar Gibbs-free energy of a chain of a lengthy within an extended chain crystal and the melt rsp - g o c ;g o m molar free enthalpy of the unit in the crystal lattice and the melt rsp - g(y,y, f) molar Gibbs-function of an ideally folded chain crystal with the fold heighty f - gco(y, y ef,y f) molar free enthalpy of the crystal corey co - g 0 ex ((yef) excess free enthalpy of the longitudinal layers of folded chain crystals - g f(yef,g o ex ) molar free enthalpy of the longitudinal layers of the folded chain crystals - g tot molar free enthalpy of a chain of the lengthy within a folded chain crystal with longitudinal layers - h o 1c ,h o m molar enthalpy of the chain unit within the crystal lattice and the melt rsp - h =h o m -h o c molar heat of fusion of the unit - C p=C p m -C p c difference of the molar specific heat of a unit within the melt and within the chain crystal - h D molar defect enthalpy of local defects within the crystal lattice - h D molar defect enthalpy of the unit - s o c ,s o m molar entropy of the chain unit within the crystal lattice and the melt rsp - s c m conformational entropy of a chain in the melt - s gk conformational entropy of a chain of lengthy within a super-lattice as indicated in figure 5, - s molar entropy of fusion of the melt - s n c nematic configurational entropy - T absolute temperature - T M melting temperature of extended chain crystals of infinite size - T M(y) melting temperature of extended chain crystals containing only chains of the lengthy - T M (y, y f) melting temperatureof folded chain crystals of the thicknessy f composed of chains of the lengthy - T M(y f) melting temperature of folded chain crystals of the thicknessy fy - eh excess free enthalpy of the chain ends occupying crystallographic places - ef excess free enthalpy of a single fold loop - z coordination number of the lattice - 7 Euler's constant - R Boltzmann's constant - y number of chain units - y f height of lamelliform folded chain crystals - f=(y/y f - 1) number of fold loops of a chain of a lengthy when being built into a folded chain crystal of the thicknessy f - y co thickness of the crystal core of the simplified twophase model - y et average thickness of the surface layers of folded chain crystals - N c number of crystallized units of a chain of the lengthy - x c molar number of crystallized units of a chain of the lengthy - x nc molar number of noncrystallized units - excess free enthalpy parameter - (y f) thickness distribution of the fold heightsy f With 15 figures and 2 tables 相似文献
Zusammenfassung Das Schmelzen in polymeren Einteilchensystemen mit Faltungskristallen einheitlicher Dicke kann thermodynamisch als Umwandlung 1. Ordnung in einer Richtung behandelt werden, wenn die Faltungslänge bis zur Umwandlungstemperatur konstant bleibt (Faltungslänge als innerer Zusatzparameter). Eine wesentliche begriffliche Erweiterung ist für eine phänomenologische Beschreibung mit den Mitteln der Thermodynamik unumgänglich, wenn eine Faltungskristallit-Dickenverteilung existiert, weil dann prinzipiell nur noch partielle Koexistenz bestimmter Fraktionen metastabiler autonomer Mikrophasen mit der Schmelze möglich ist. Partielles Aufschmelzen und Rektistallisation können so dann auch in Betracht genommen werden. Die entwickelten Konzeptionen bewähren sich in der Anwendung auf bekannte Experimente.
Notation g c (y);g m (Y) molar Gibbs-free energy of a chain of a lengthy within an extended chain crystal and the melt rsp - g o c ;g o m molar free enthalpy of the unit in the crystal lattice and the melt rsp - g(y,y, f) molar Gibbs-function of an ideally folded chain crystal with the fold heighty f - gco(y, y ef,y f) molar free enthalpy of the crystal corey co - g 0 ex ((yef) excess free enthalpy of the longitudinal layers of folded chain crystals - g f(yef,g o ex ) molar free enthalpy of the longitudinal layers of the folded chain crystals - g tot molar free enthalpy of a chain of the lengthy within a folded chain crystal with longitudinal layers - h o 1c ,h o m molar enthalpy of the chain unit within the crystal lattice and the melt rsp - h =h o m -h o c molar heat of fusion of the unit - C p=C p m -C p c difference of the molar specific heat of a unit within the melt and within the chain crystal - h D molar defect enthalpy of local defects within the crystal lattice - h D molar defect enthalpy of the unit - s o c ,s o m molar entropy of the chain unit within the crystal lattice and the melt rsp - s c m conformational entropy of a chain in the melt - s gk conformational entropy of a chain of lengthy within a super-lattice as indicated in figure 5, - s molar entropy of fusion of the melt - s n c nematic configurational entropy - T absolute temperature - T M melting temperature of extended chain crystals of infinite size - T M(y) melting temperature of extended chain crystals containing only chains of the lengthy - T M (y, y f) melting temperatureof folded chain crystals of the thicknessy f composed of chains of the lengthy - T M(y f) melting temperature of folded chain crystals of the thicknessy fy - eh excess free enthalpy of the chain ends occupying crystallographic places - ef excess free enthalpy of a single fold loop - z coordination number of the lattice - 7 Euler's constant - R Boltzmann's constant - y number of chain units - y f height of lamelliform folded chain crystals - f=(y/y f - 1) number of fold loops of a chain of a lengthy when being built into a folded chain crystal of the thicknessy f - y co thickness of the crystal core of the simplified twophase model - y et average thickness of the surface layers of folded chain crystals - N c number of crystallized units of a chain of the lengthy - x c molar number of crystallized units of a chain of the lengthy - x nc molar number of noncrystallized units - excess free enthalpy parameter - (y f) thickness distribution of the fold heightsy f With 15 figures and 2 tables 相似文献
72.
Prof. Dr. G. Zigeuner W. Galatik W. -B. Lintschinger F. Wede 《Monatshefte für Chemie / Chemical Monthly》1975,106(5):1219-1233
The title compounds7 are formed in a general reaction by heating β-isothiocyanoketones3 with primary amines in inert solvents, or by thermal elimination of water from tetrahydro-6-hydroxy-6-methyl-2(1H)-pyrimidinethiones5, also in inert solvents. The 1-alkyl compounds can also be prepared under similar conditions from α,β-unsaturated ketones by reaction with alkylammonium rhodanides. The NMR-spectra show that the 1-substituted dihydro-6-methyl-2(1H)-pyrimidinethiones are in tautomeric equilibrium with the tetrahydro-6-methylene-2(1H)-pyrimidinethiones13. The reactivity of 1-alkyl and 1-aryldihydro-6-methyl-2(1H)-pyrimidinethiones is similar to that of dihydro-4,4,6-trimethyl-2(1H)-pyrimidinethione7 j, although their ring stability is certainly less. 相似文献
73.
Prof. Dr. E. Nachbaur A. Popitsch P. Burkert 《Monatshefte für Chemie / Chemical Monthly》1974,105(4):822-833
According to spectroscopic (IR, broadline proton NMR) and chemical (alkylation) investigations of disilver sulphamide the following molecular structure is assumed: $$\begin{gathered} O \hfill \\ || \hfill \\ H_2 N\_\_S\_\_NAg| \hfill \\ OAg \hfill \\ \end{gathered}$$ From the IR and NMR data deduction concerning the nature of the chemical bonds in this compound is possible. The instability of the still unknown mono-and trisilver sulphamide is discussed with regard to the structure of disilver sulphamide. 相似文献
74.
M.A. Breazeale J. Philip A. Zarembowitch M. Fischer Y. Gesland 《Journal of sound and vibration》1983,88(1):133-140
Combination of the results of two sets of measurements on the same crystalline samples of CsCdF3 and KZnF3 has made possible the evaluation of the third-order elastic (TOE) constants of these two fluoroperovskites. In the first technique the hydrostatic pressure dependence of the velocity of ultrasonic waves of different propagation and polarization directions has been measured to determine three linear combinations of TOE constants. In the second technique the fundamental and the second harmonic amplitudes of an initially sinusoidal longitudinal ultrasonic wave of finite amplitude propagating along the principal directions have been measured to determine three other linear combinations. Combination of the two sets of data leads to the following room temperature values of the TOE constants (in units of 1012 dynes/cm2):
Sample | C111 | C112 | C114 | C166 | C123 | C456 |
CsCdF3 | ?13·2 | ?4·55 | ?3·12 | ?0·69 | +2·6 | ?3·8 |
KZnF3 | ?16·6 | ?4·75 | ?0·52 | ?1·79 | +3·2 | ?6·87 |