首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47534篇
  免费   15875篇
  国内免费   51篇
化学   56672篇
晶体学   63篇
力学   1252篇
数学   2812篇
物理学   2661篇
  2024年   424篇
  2023年   4276篇
  2022年   1412篇
  2021年   2438篇
  2020年   4724篇
  2019年   2274篇
  2018年   2514篇
  2017年   739篇
  2016年   5796篇
  2015年   5705篇
  2014年   5197篇
  2013年   5718篇
  2012年   3373篇
  2011年   1377篇
  2010年   3552篇
  2009年   3446篇
  2008年   1349篇
  2007年   1010篇
  2006年   466篇
  2005年   288篇
  2004年   260篇
  2003年   206篇
  2002年   193篇
  2001年   153篇
  2000年   148篇
  1995年   190篇
  1994年   131篇
  1993年   264篇
  1992年   150篇
  1991年   130篇
  1988年   169篇
  1987年   141篇
  1985年   156篇
  1984年   177篇
  1983年   163篇
  1982年   161篇
  1981年   153篇
  1980年   194篇
  1979年   178篇
  1978年   192篇
  1977年   246篇
  1976年   276篇
  1975年   264篇
  1974年   289篇
  1973年   185篇
  1972年   214篇
  1971年   166篇
  1970年   237篇
  1969年   170篇
  1968年   165篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
911.
The charge state of the Pd surface is a critical parameter in terms of the ability of Pd nanocrystals to activate O2 to generate a species that behaves like singlet O2 both chemically and physically. Motivated by this finding, we designed a metal–semiconductor hybrid system in which Pd nanocrystals enclosed by {100} facets are deposited on TiO2 supports. Driven by the Schottky junction, the TiO2 supports can provide electrons for metal catalysts under illumination by appropriate light. Further examination by ultrafast spectroscopy revealed that the plasmonics of Pd may force a large number of electrons to undergo reverse migration from Pd to the conduction band of TiO2 under strong illumination, thus lowering the electron density of the Pd surface as a side effect. We were therefore able to rationally tailor the charge state of the metal surface and thus modulate the function of Pd nanocrystals in O2 activation and organic oxidation reactions by simply altering the intensity of light shed on Pd–TiO2 hybrid structures.  相似文献   
912.
Quantum dots (QDs) offer new and versatile ways to harvest light energy. However, there are few examples involving the utilization of QDs in organic synthesis. Visible‐light irradiation of CdSe QDs was found to result in virtually quantitative coupling of a variety of thiols to give disulfides and H2 without the need for sacrificial reagents or external oxidants. The addition of small amounts of nickel(II) salts dramatically improved the efficiency and conversion through facilitating the formation of hydrogen atoms, thereby leading to faster regeneration of the ground‐state QDs. Mechanistic studies reveal that the coupling reaction occurs on the QD surfaces rather than in solution and offer a blueprint for how these QDs may be used in other photocatalytic applications. Because no sacrificial agent or oxidant is necessary and the catalyst is reusable, this method may be useful for the formation of disulfide bonds in proteins as well as in other systems sensitive to the presence of oxidants.  相似文献   
913.
Many proteins exert their biological activities through small exposed surface regions called epitopes that are folded peptides of well‐defined three‐dimensional structures. Short synthetic peptide sequences corresponding to these bioactive protein surfaces do not form thermodynamically stable protein‐like structures in water. However, short peptides can be induced to fold into protein‐like bioactive conformations (strands, helices, turns) by cyclization, in conjunction with the use of other molecular constraints, that helps to fine‐tune three‐dimensional structure. Such constrained cyclic peptides can have protein‐like biological activities and potencies, enabling their uses as biological probes and leads to therapeutics, diagnostics and vaccines. This Review highlights examples of cyclic peptides that mimic three‐dimensional structures of strand, turn or helical segments of peptides and proteins, and identifies some additional restraints incorporated into natural product cyclic peptides and synthetic macrocyclic peptidomimetics that refine peptide structure and confer biological properties.  相似文献   
914.
Extensive research has been devoted to the chemical manipulation of carbon nanotubes. The attachment of molecular fragments through covalent‐bond formation produces kinetically stable products, but implies the saturation of some of the C? C double bonds of the nanotubes. Supramolecular modification maintains the structure of the SWNTs but yields labile species. Herein, we present a strategy for the synthesis of mechanically interlocked derivatives of SWNTs (MINTs). In the key rotaxane‐forming step, we employed macrocycle precursors equipped with two π‐extended tetrathiafulvalene SWNT recognition units and terminated with bisalkenes that were closed around the nanotubes through ring‐closing metathesis (RCM). The mechanically interlocked nature of the derivatives was probed by analytical, spectroscopic, and microscopic techniques, as well as by appropriate control experiments. Individual macrocycles were observed by HR STEM to circumscribe the nanotubes.  相似文献   
915.
The structure of the new medium‐pore aluminophosphate molecular sieve PST‐6 is determined by the combined use of rotation electron diffraction tomography, synchrotron X‐ray powder diffraction, and computer modeling. PST‐6 was prepared by calcination of another new aluminophosphate material with an unknown structure synthesized using diethylamine as a structure‐directing agent, which is thought to contain bridging hydroxy groups. PST‐6 has 36 crystallographically distinct tetrahedral sites in the asymmetric unit and is thus crystallographically the most complex zeolitic structure ever solved.  相似文献   
916.
Photochromic ligands have been used to control a variety of biological functions, especially in neural systems. Recently, much effort has been invested in the photocontrol of ion channels and G‐protein coupled receptors found in the synapse. Herein, we describe the expansion of our photopharmacological approach toward the remote control of an enzyme. Building on hallmark studies dating from the late 1960s, we evaluated photochromic inhibitors of one of the most important enzymes in synaptic transmission, acetylcholinesterase (AChE). Using structure‐based design, we synthesized several azobenzene analogues of the well‐known AChE inhibitor tacrine (THA) and determined their effects on enzymatic activity. One of our compounds, AzoTHA, is a reversible photochromic blocker of AChE in vitro and ex vivo with high affinity and fast kinetics. As such, AzoTHA can be used to control synaptic transmission on the neuromuscular endplate based on the light‐dependent clearance of a neurotransmitter.  相似文献   
917.
Versatile ruthenium(II) complexes allow for site‐selective C? H oxygenations with weakly‐coordinating aldehydes. The challenging C? H functionalizations proceed with high chemoselectivity by rate‐determining C? H metalation. The new method features an ample substrate scope, which sets the stage for the step‐economical preparation of various bioactive heterocycles.  相似文献   
918.
919.
920.
In this work, we focus on the formation of different kinds of charge carriers such as polarons and bipolarons upon p‐type doping (oxidation) of the organic semiconductor poly(3‐ hexylthiophene‐2,5‐diyl) (P3HT). We elucidate the cyclic voltammogram during oxidation of this polymer and present spectroscopic changes upon doping in the UV/Vis/near‐IR range as well as in the mid‐IR range. In the low‐oxidation regime, two absorption bands related to sub‐gap transitions appear, one in the UV/Vis range and another one in the mid‐IR range. The UV/Vis absorption gradually decreases upon further doping while the mid‐IR absorption shifts to lower energy. Additionally, electron paramagnetic resonance (EPR) measurements are performed, showing an increase of the EPR signal up to a certain doping level, which significantly decreases upon further doping. Furthermore, the absorption spectra in the UV/Vis range are analyzed in relation to the morphology (crystalline vs. amorphous) by using theoretical models. Finally, the calculated charge carriers from cyclic voltammogram are linked together with optical transitions as well as with the EPR signals upon p‐type doping. We stress that our results indicate the formation of polarons at low doping levels and the existence of bipolarons at high doping levels. The presented spectroscopic data are an experimental evidence of the formation of bipolarons in P3HT.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号