全文获取类型
收费全文 | 57386篇 |
免费 | 18770篇 |
国内免费 | 2310篇 |
专业分类
化学 | 64945篇 |
晶体学 | 175篇 |
力学 | 2144篇 |
综合类 | 165篇 |
数学 | 2992篇 |
物理学 | 8045篇 |
出版年
2024年 | 477篇 |
2023年 | 4477篇 |
2022年 | 2063篇 |
2021年 | 3139篇 |
2020年 | 5390篇 |
2019年 | 3045篇 |
2018年 | 2983篇 |
2017年 | 1208篇 |
2016年 | 6353篇 |
2015年 | 6286篇 |
2014年 | 5890篇 |
2013年 | 6362篇 |
2012年 | 4776篇 |
2011年 | 2659篇 |
2010年 | 4460篇 |
2009年 | 4295篇 |
2008年 | 2205篇 |
2007年 | 1774篇 |
2006年 | 1043篇 |
2005年 | 844篇 |
2004年 | 634篇 |
2003年 | 575篇 |
2002年 | 543篇 |
2001年 | 482篇 |
2000年 | 366篇 |
1999年 | 445篇 |
1998年 | 344篇 |
1997年 | 313篇 |
1996年 | 325篇 |
1995年 | 336篇 |
1994年 | 265篇 |
1993年 | 365篇 |
1992年 | 215篇 |
1991年 | 176篇 |
1990年 | 159篇 |
1989年 | 133篇 |
1988年 | 144篇 |
1987年 | 121篇 |
1980年 | 110篇 |
1979年 | 98篇 |
1977年 | 162篇 |
1976年 | 181篇 |
1975年 | 185篇 |
1974年 | 194篇 |
1973年 | 110篇 |
1972年 | 153篇 |
1971年 | 122篇 |
1970年 | 207篇 |
1969年 | 125篇 |
1968年 | 133篇 |
排序方式: 共有10000条查询结果,搜索用时 54 毫秒
51.
Ai‐Hua Zhao Yan Zhang Zhao‐Hui Xu Jian‐Wen Liu Wei Jia 《Helvetica chimica acta》2004,87(12):3160-3166
Three new enmein‐type ent‐kaurenoids, i.e., the two pairs 1 and 2 of 20‐epimers and the (20R)‐isomer 3 , besides the seven known diterpenoids 4 – 10 , were isolated from the aerial parts of Isodon serra. Their structures were elucidated by spectroscopic techniques and X‐ray diffraction. The immunosuppressive effect for T‐lymphocytes proliferation induced by Con A in BALB/c mouse was evaluated for the isolates 1 – 10 . They all displayed a remarkable inhibitory effect, with multi‐glycosides of Tripterygium wilfordii as positive reference substance (Table 3). 相似文献
52.
Adsorption of NH3 onto activated carbon prepared from palm shells impregnated with H2SO4 总被引:3,自引:0,他引:3
Adsorption of ammonia (NH3) onto activated carbons prepared from palm shells impregnated with sulfuric acid (H2SO4) was investigated. The effects of activation temperature and acid concentration on pore surface area development were studied. The relatively large micropore surface areas of the palm-shell activated carbons prepared by H2SO4 activation suggest their potential applications in gas adsorption. Adsorption experiments at a fixed temperature showed that the amounts of NH3 adsorbed onto the chemically activated carbons, unlike those prepared by CO2 thermal activation, were not solely dependent on the specific pore surface areas of the adsorbents. Further adsorption tests for a wide range of temperatures suggested combined physisorption and chemisorption of NH3. Desorption tests at the same temperature as adsorption and at an elevated temperature were carried out to confirm the occurrence of chemisorption due to the interaction between NH3 and some oxygen functional groups via hydrogen bonding. The surface functional groups on the adsorbent surface were detected by Fourier transform infrared spectroscopy. The amounts of NH3 adsorbed by chemisorption were correlated with the contents of elemental oxygen present in the adsorbents. Mechanisms for chemical activation and adsorption processes are proposed based on the observed phenomena. 相似文献
53.
The importance of the rheological behaviour of solutions of macromolecules is briefly evaluated. The viscosity of the solutions depends on concentration, shear rate and time of shear, this relation being determined by the structure of the dissolved molecules. In dilute solutions shear dependence of viscosity is very frequently caused by the preferential orientation of anisotropic molecules. In such a case the particle dimensions can be calculated from the true limiting viscosity number, an anisotropy factor, the rotational diffusion constant and the effective particle density. These numbers can be derived from the flow curve, which has been extrapolated to zero concentration. It is necessary to measure the flow curve at shear gradients, which are sufficiently low to allow for an extrapolation to vanishing shear rate. By comparing the experimental flow curve with a choice of theoretical ones, the rotational diffusion constant and the anisotropy factor (axial ratio) can be found. From the limiting viscosity number and the axial ratio, the particle density can be calculated. 相似文献
54.
L. Ramakrishnan Prof. Dr. S. Soundararajan 《Monatshefte für Chemie / Chemical Monthly》1977,108(1):225-231
Complexes of 2,6-dimethylpyridine 1-oxide with lanthanide iodides of the formulaeLn(2,6-LTNO)5I3 whereLn=La, Tb and Yb,Ln(2,6-LTNO)4I3 whereLn=Pr and Nd and Er(2,6-LTNO)4.5I3 have been prepared and characterised by chemical analysis, infrared and conductance studies. Infrared and conductance data have been interpreted in terms of dimeric (or polymeric) structures involving bridging amine oxide groups.
Mit 2 Abbildungen 相似文献
Mit 2 Abbildungen 相似文献
55.
Prof. Dr. O. Hromatka D. Binder K. Eichinger 《Monatshefte für Chemie / Chemical Monthly》1974,105(1):123-126
The synthesis of 5-(o-trifluoromethylphenyl)-1H-thieno-[3,4-e]1,4-diazepin-2(3H)-one (7) and its nitration and chlorination in pos. 8 are described. 相似文献
56.
Prof. Dr. Enrique J. Baran 《Monatshefte für Chemie / Chemical Monthly》1975,106(1):121-126
Mean amplitudes of vibration of a series of tetrahedralXY 4 molecules and ions (hydrides, halides, oxides and oxoanions) have been calculated using the “Method of the Characteristic Vibrations” ofA. Müller. The results indicate that this method leads to very good values for most of the investigated species, and especially in the cases of highM X/MY mass ratio. 相似文献
57.
The Mitsunobu reaction is a widely used and versatile method for the dehydrative oxidation–reduction condensation of an acid/pronucleophile usually with a primary or secondary alcohol that requires the combination of a reducing phosphine reagent together with an oxidizing azo reagent. The utility of this reaction stems from the fact that it is generally highly stereoselective and occurs with inversion of the stereochemical configuration of the alcohol starting material. Furthermore, as carboxylic acids, phenols, imides, sulfonamides, and other compounds can be used as the acid/pronucleophile, this reaction is useful for the preparation of a wide variety of functional groups. This Focus Review of the Mitsunobu reaction summarizes its origins, the current understanding of its mechanism, and recent improvements and applications. 相似文献
58.
Qiang Xu Prof. Dr. Nobuko Tsumori Prof. Dr. Ling Jiang Masanobu Kondo Ryuichi Arakawa Prof. Dr. 《化学:亚洲杂志》2007,2(5):599-608
Carbonyldinitrosyltris(fluorosulfato)tungstate(II) and ‐molybdate‐(II) anions, [fac‐M(CO)(NO)2(SO3F)3]? (M=W, Mo), which are novel weakly coordinating anions that contain a metal carbonyl/nitrosyl moiety, have been generated in fluorosulfonic acid and completely characterized by multinuclear NMR, IR, and Raman spectroscopy as well as ESI mass spectrometry. ESI MS measurements performed for the first time on a superacidic solution system unambiguously reveal the formation of the monoanionic, mononuclear W and Mo complexes formulated as [M(CO)(NO)2(SO3F)3]? (M=W, Mo). Multinuclear NMR spectroscopic studies at natural abundance and 13C and 15N enrichment clearly indicate the presence of one CO ligand, two equivalent NO ligands, and two types of nonequivalent SO3F? groups in a 2:1 ratio. The IR and Raman spectra reveal that the two equivalent NO ligands have a cis conformation, thus indicating a fac structure. Density functional calculations at the B3LYP level of theory predict that these anions have a singlet ground state (1A′) with a Cs symmetry along with C–O and N–O vibrational frequencies that are in agreement with the experimental observations. Mulliken population analysis shows that the monovalent negative charge is dispersed on the bulky sphere, the surface of which is covered by all the negatively charged O and F atoms with charge densities much lower than SO3F?, suggesting that [fac‐M(CO)(NO)2(SO3F)3]? (M=W, Mo) are weakly nucleophilic and poorly coordinating anions. 相似文献
59.
Xiaoming Ren Jingli Xie Youcun Chen Reinhard Karl Kremer 《Journal of Molecular Structure》2003,660(1-3):139-146
The two ion-pair complexes, [pyH]2[Zn(mnt)2] (1) and [4,4′-bipyH2]-[Zn(mnt)2] (2), were synthesized, where mnt2− denotes maleonitriledithiolate, and [pyH]+, [4,4′-bipyH2]2+ represent pyridinium and diprotonated 4,4′-bipyridinium, respectively. Their single crystal structures show that there are strong bifurcated H-bonding interactions between the cations of the pyridinium derivative and the [Zn(mnt)2]2− anions in both 1 and 2. The bifurcated H-bonding interactions between the N–H of the pyridiniums and the CN groups of the mnt2− ligands give rise to a 2D layered H-bonding network, the adjacent layers come together in such way as mutual embrace to give a tight pack, thus 2D hydrogen-bonding sheets further develop into 3D H-bonding networks through weak C–HS and ππ stacking interactions in 1. As for 2, the cations and anions connect into several types of H-bonding macrorings ([2+2], [3+3] and [4+4]), these H-bonding macrorings fuse to extend into 2D layered structure, the interpenetration between [3+3] and [4+4] type H-bonding macrorings in the adjacent layers give further rise to novel 3D extended H-bonding networks, in which there are clearly parallel stacks of cations and the chelate rings of anions. 相似文献
60.
Prof. Dr. H. G. Kilian 《Colloid and polymer science》1977,255(8):740-754
Summary A thermodynamic treatment of homo-polymer systems out of linear chains with folded chain crystals is developed outgoing from appropriate models for single component systems. An expansion of thermodynamics to multi-micro-phase systems the structure of which is partially or totaly frozen is indispensable. General properties of melt crystallized homopolymers with folded chain crystals can be recognized indeed when the thermodynamic formalisms developed are applied.
Notation g c (y);g m (Y) molar Gibbs-free energy of a chain of a lengthy within an extended chain crystal and the melt rsp - g o c ;g o m molar free enthalpy of the unit in the crystal lattice and the melt rsp - g(y,y, f) molar Gibbs-function of an ideally folded chain crystal with the fold heighty f - gco(y, y ef,y f) molar free enthalpy of the crystal corey co - g 0 ex ((yef) excess free enthalpy of the longitudinal layers of folded chain crystals - g f(yef,g o ex ) molar free enthalpy of the longitudinal layers of the folded chain crystals - g tot molar free enthalpy of a chain of the lengthy within a folded chain crystal with longitudinal layers - h o 1c ,h o m molar enthalpy of the chain unit within the crystal lattice and the melt rsp - h =h o m -h o c molar heat of fusion of the unit - C p=C p m -C p c difference of the molar specific heat of a unit within the melt and within the chain crystal - h D molar defect enthalpy of local defects within the crystal lattice - h D molar defect enthalpy of the unit - s o c ,s o m molar entropy of the chain unit within the crystal lattice and the melt rsp - s c m conformational entropy of a chain in the melt - s gk conformational entropy of a chain of lengthy within a super-lattice as indicated in figure 5, - s molar entropy of fusion of the melt - s n c nematic configurational entropy - T absolute temperature - T M melting temperature of extended chain crystals of infinite size - T M(y) melting temperature of extended chain crystals containing only chains of the lengthy - T M (y, y f) melting temperatureof folded chain crystals of the thicknessy f composed of chains of the lengthy - T M(y f) melting temperature of folded chain crystals of the thicknessy fy - eh excess free enthalpy of the chain ends occupying crystallographic places - ef excess free enthalpy of a single fold loop - z coordination number of the lattice - 7 Euler's constant - R Boltzmann's constant - y number of chain units - y f height of lamelliform folded chain crystals - f=(y/y f - 1) number of fold loops of a chain of a lengthy when being built into a folded chain crystal of the thicknessy f - y co thickness of the crystal core of the simplified twophase model - y et average thickness of the surface layers of folded chain crystals - N c number of crystallized units of a chain of the lengthy - x c molar number of crystallized units of a chain of the lengthy - x nc molar number of noncrystallized units - excess free enthalpy parameter - (y f) thickness distribution of the fold heightsy f With 15 figures and 2 tables 相似文献
Zusammenfassung Das Schmelzen in polymeren Einteilchensystemen mit Faltungskristallen einheitlicher Dicke kann thermodynamisch als Umwandlung 1. Ordnung in einer Richtung behandelt werden, wenn die Faltungslänge bis zur Umwandlungstemperatur konstant bleibt (Faltungslänge als innerer Zusatzparameter). Eine wesentliche begriffliche Erweiterung ist für eine phänomenologische Beschreibung mit den Mitteln der Thermodynamik unumgänglich, wenn eine Faltungskristallit-Dickenverteilung existiert, weil dann prinzipiell nur noch partielle Koexistenz bestimmter Fraktionen metastabiler autonomer Mikrophasen mit der Schmelze möglich ist. Partielles Aufschmelzen und Rektistallisation können so dann auch in Betracht genommen werden. Die entwickelten Konzeptionen bewähren sich in der Anwendung auf bekannte Experimente.
Notation g c (y);g m (Y) molar Gibbs-free energy of a chain of a lengthy within an extended chain crystal and the melt rsp - g o c ;g o m molar free enthalpy of the unit in the crystal lattice and the melt rsp - g(y,y, f) molar Gibbs-function of an ideally folded chain crystal with the fold heighty f - gco(y, y ef,y f) molar free enthalpy of the crystal corey co - g 0 ex ((yef) excess free enthalpy of the longitudinal layers of folded chain crystals - g f(yef,g o ex ) molar free enthalpy of the longitudinal layers of the folded chain crystals - g tot molar free enthalpy of a chain of the lengthy within a folded chain crystal with longitudinal layers - h o 1c ,h o m molar enthalpy of the chain unit within the crystal lattice and the melt rsp - h =h o m -h o c molar heat of fusion of the unit - C p=C p m -C p c difference of the molar specific heat of a unit within the melt and within the chain crystal - h D molar defect enthalpy of local defects within the crystal lattice - h D molar defect enthalpy of the unit - s o c ,s o m molar entropy of the chain unit within the crystal lattice and the melt rsp - s c m conformational entropy of a chain in the melt - s gk conformational entropy of a chain of lengthy within a super-lattice as indicated in figure 5, - s molar entropy of fusion of the melt - s n c nematic configurational entropy - T absolute temperature - T M melting temperature of extended chain crystals of infinite size - T M(y) melting temperature of extended chain crystals containing only chains of the lengthy - T M (y, y f) melting temperatureof folded chain crystals of the thicknessy f composed of chains of the lengthy - T M(y f) melting temperature of folded chain crystals of the thicknessy fy - eh excess free enthalpy of the chain ends occupying crystallographic places - ef excess free enthalpy of a single fold loop - z coordination number of the lattice - 7 Euler's constant - R Boltzmann's constant - y number of chain units - y f height of lamelliform folded chain crystals - f=(y/y f - 1) number of fold loops of a chain of a lengthy when being built into a folded chain crystal of the thicknessy f - y co thickness of the crystal core of the simplified twophase model - y et average thickness of the surface layers of folded chain crystals - N c number of crystallized units of a chain of the lengthy - x c molar number of crystallized units of a chain of the lengthy - x nc molar number of noncrystallized units - excess free enthalpy parameter - (y f) thickness distribution of the fold heightsy f With 15 figures and 2 tables 相似文献