首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44530篇
  免费   15777篇
  国内免费   52篇
化学   57570篇
晶体学   31篇
力学   1086篇
数学   1168篇
物理学   504篇
  2024年   426篇
  2023年   4320篇
  2022年   2502篇
  2021年   3951篇
  2020年   6569篇
  2019年   2229篇
  2018年   2374篇
  2017年   601篇
  2016年   5552篇
  2015年   5511篇
  2014年   4927篇
  2013年   5057篇
  2012年   3061篇
  2011年   1007篇
  2010年   3334篇
  2009年   3267篇
  2008年   1013篇
  2007年   699篇
  2006年   127篇
  2005年   87篇
  2004年   68篇
  2003年   70篇
  1996年   58篇
  1995年   110篇
  1994年   71篇
  1993年   187篇
  1992年   67篇
  1991年   58篇
  1989年   48篇
  1988年   75篇
  1987年   60篇
  1986年   45篇
  1985年   51篇
  1984年   59篇
  1983年   64篇
  1982年   74篇
  1981年   85篇
  1980年   104篇
  1979年   94篇
  1978年   95篇
  1977年   162篇
  1976年   181篇
  1975年   187篇
  1974年   195篇
  1973年   111篇
  1972年   153篇
  1971年   122篇
  1970年   207篇
  1969年   126篇
  1968年   142篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Two structural isomers containing five second-row element atoms with 24 valence electrons were generated and identified by matrix-isolation IR spectroscopy and quantum chemical calculations. The OCBNO complex, which is produced by the reaction of boron atoms with mixtures of carbon monoxide and nitric oxide in solid neon, rearranges to the more stable OBNCO isomer on UV excitation. Bonding analysis indicates that the OCBNO complex is best described by the bonding interactions between a triplet-state boron cation with an electron configuration of (2s)0(2pσ)0(2pπ)2 and the CO/NO ligands in the triplet state forming two degenerate electron-sharing π bonds and two ligand-to-boron dative σ bonds.  相似文献   
102.
One of the most applied reaction types to synthesize shape-persistent organic cage compounds is the imine condensation reaction and it is assumed that the formed cages are thermodynamically controlled products due to the reversibility of the imine condensation. However, most of the synthesized imine cages reported are formed as precipitate from the reaction mixture and therefore rather may be kinetically controlled products. There are even examples in literature, where resulting cages are not soluble at all in common organic solvents to characterize or study their formation by NMR spectroscopy in solution. Here, a triptycene triamine containing three solubilizing n-hexyloxy chains has been used to synthesize soluble congeners of prior insoluble cages. This allowed us to study the formation as well as the reversibility of cage formation in solution by investigating exchange of building blocks between the cages and deuterated derivatives thereof.  相似文献   
103.
The use of a carbazolyl-connected di-gold(I) metallotweezer for the encapsulation of several electron-poor organic substrates, and a planar Au(III) complex containing a CNC pincer ligand, is described. The binding affinity of the receptor depends on the electron-deficient character of the planar guest, with larger association constants found for the more electron-poor guests. The X-ray diffraction molecular structures of two host:guest adducts show that the host approaches its arms in order to facilitate the optimum interaction with the surface of the planar guests, in a clear example of an guest-induced fit conformational arrangement. The electrochemical studies of the encapsulation of N,N’-dimethyl-naphthalenetetracarboxy diimide (NTCDI) show that the redox active guest is released from the receptor upon one electron reduction, thus constituting an example of redox-switchable binding.  相似文献   
104.
The chromophore class of 1,3,8,10-tetrasubstituted peropyrenes was effectively synthesized from peropyrenequinone via a Zn-mediated reductive aromatization approach. In one step, a symmetric functionalization of the peropyrene backbone introducing silylethers ( 2 , 3 ), pivaloyl ( 4 ), triflyl ( 5 ) and also phosphinite ( 6 ) groups was established. Furthermore, the potential of using 4 and 5 in transition metal catalysed cross couplings was explored leading to 1,3,8,10-tetraaryl ( 8 - 11 ) and tetraalkynyl ( 7 ) peropyrenes. The influence of various substituents on the optoelectronic properties of these π-system extended peropyrenes was investigated in solid state by means of X-ray crystallography, in solution by means of UV-Vis and fluorescence spectroscopy and by their redox properties studied via cyclic voltammetry. By comparison with DFT and TD-DFT calculations, it could be elucidated that introduction of a broad variety of substituents in such versatile one or two step procedures leads to peropyrenes with easily tunable HOMO and LUMO energies ranging in a gap window of 0.8 eV. The frontier molecular orbital energies identify the target molecules as promising candidates for hole transporting semiconductors.  相似文献   
105.
The involvement of silver in two-electron AgI/AgIII processes is currently emerging. However, the range of stability of the required and uncommon AgIII species is virtually unknown. Here, the stability of AgIII towards the whole set of halide ligands in the organosilver(III) complex frame [(CF3)3AgX] (X=F, Cl, Br, I, At) is theoretically analyzed. The results obtained depend on a single factor: the nature of X. Even the softest and least electronegative halides (I and At) are found to form reasonably stable AgIII−X bonds. Our estimates were confirmed by experiment. The whole series of nonradiative halide complexes [PPh4][(CF3)3AgX] (X=F, Cl, Br, I) has been experimentally prepared and all its constituents have been isolated in pure form. The pseudohalides [PPh4][(CF3)3AgCN] and [PPh4][(CF3)3Ag(N3)] have also been isolated, the latter being the first silver(III) azido complex. Except for the iodo compound, all the crystal and molecular structures have been established by single-crystal X-ray diffraction methods. The decomposition paths of the [(CF3)3AgX] entities at the unimolecular level have been examined in the gas phase by multistage mass spectrometry (MSn). The experimental detection of the two series of mixed complexes [CF3AgX] and [FAgX] arising from the corresponding parent species [(CF3)3AgX] demonstrate that the Ag−X bond is particularly robust. Our experimental observations are rationalized with the aid of theoretical methods. Smooth variation with the electronegativity of X is also observed in the thermolyses of bulk samples. The thermal stability in the solid state gradually decreases from X=F (145 °C, dec.) to X=I (78 °C, dec.) The experimentally established compatibility of AgIII with the heaviest halides is of particular relevance to silver-mediated or silver-catalyzed processes.  相似文献   
106.
Alkali-metal ferrates containing amide groups have emerged as regioselective bases capable of promoting Fe−H exchanges of aromatic substrates. Advancing this area of heterobimetallic chemistry, a new series of sodium ferrates is introduced incorporating the bulky arylsilyl amido ligand N(SiMe3)(Dipp) (Dipp=2,6-iPr2-C6H3). Influenced by the large steric demands imposed by this amide, transamination of [NaFe(HMDS)3] (HMDS=N(SiMe3)2) with an excess of HN(SiMe3)(Dipp) led to the isolation of heteroleptic [Na(HMDS)2Fe{N(SiMe3)Dipp}] ( 1 ) resulting from the exchange of just one HMDS group. An alternative co-complexation approach, combining the homometallic metal amides [NaN(SiMe3)Dipp] and [Fe{N(SiMe3)Dipp}2] induces lateral metallation of one Me arm from the SiMe3 group in the iron amide furnishing tetrameric [NaFe{N(SiCH2Me2)Dipp}{N(SiMe3)Dipp}]4 ( 2 ). Reactivity studies support that this deprotonation is driven by the steric incompatibility of the single metal amides rather than the basic capability of the sodium reagent. Displaying synergistic reactivity, heteroleptic sodium ferrate 1 can selectively promote ferration of pentafluorobenzene using one of its HMDS arms to give heterotrileptic [Na{N(SiMe3)Dipp}(HMDS)Fe(C6F5)] ( 4 ). Attempts to deprotonate less activated pyridine led to the isolation of NaHMDS and heteroleptic Fe(II) amide [(py)Fe{N(SiMe3)Dipp}(HMDS)] ( 5 ), resulting from an alternative redistribution process which is favoured by the Lewis donor ability of this substrate.  相似文献   
107.
Methanol is used as a common solvent, cost-effective reagent, and sustainable feedstock for value-added chemicals, pharmaceuticals, and materials. Among the various applications, the utilization of methanol as a C1 source for the formation of carbon–carbon, carbon–nitrogen, and carbon–oxygen bonds continues to be important in organic synthesis and drug discovery. In particular, the synthesis of C-, N-, and O-methylated products is of central interest because these motifs are found in a large number of natural products as well as fine and bulk chemicals. In this Minireview, we summarize the utilization of methanol as a C1 source in methylation, methoxylation, formylation, methoxycarbonylation, and oxidative methyl ester formation reactions.  相似文献   
108.
Engineering near-infrared (NIR) light-sensitive enzymes remains a huge challenge. A photothermal effect-associated method is developed for tailoring the enzymatic activity of enzymes by exposure to NIR light. An ultrasmall platinum nanoparticle was anchored in an enzyme to generate local heating upon NIR irradiation, which enhanced the enzyme activity without increasing bulk temperature. Following NIR irradiation, the enzyme activity was tailored rapidly and reversibly, and was modulated by varying laser power density and irradiation time. Four enzymes were engineered, including glucoamylase, glucose oxidase, catalase, and proteinase K with NIR-light sensitivity, and demonstrated their utility in practical applications such as photolithography and NIR light-responsive antibacterial or anticancer actions. Our investigation suggests that this approach could be broadly used to engineer enzymes with NIR-light sensitivity for many biological applications.  相似文献   
109.
Owing to its versatility in synthetic chemistry, TPB (tris[2-diisopropylphospino)phenyl]borane) is a very important frustrated Lewis Pair. The unusual stability of the neutral radical (TPB)Cu has been related to the presence of a one-electron B−Cu bond. Herein we show, through the use of different computational chemistry methods, that the existence and nature of this kind of A⋅⋅⋅M bond (A=donor atom, M=transition metal) depends on the surrounding chemical structure, and can be genuine one-electron sigma bonds only if appropriate metal ligands (Y), able to trap the charge in the desired region, are chosen. This ability is modulated by the subtle balance between the electronegativity of the different atoms along the A⋅⋅⋅M⋅⋅⋅Y bond paths. Most importantly, contrary to many TPB complexes in which boron acts as a Lewis acid, in one-electron-bond-containing structures boron behaves as a Lewis base.  相似文献   
110.
Catalytic hydrogenation of carboxylic acid esters is essential for the green production of pharmaceuticals, fragrances, and fine chemicals. Herein, we report the efficient hydrogenation of esters with manganese catalysts based on simple bidentate aminophosphine ligands. Monoligated Mn PN complexes are particularly active for the conversion of esters into the corresponding alcohols at Mn concentrations as low as 0.2 mol % in the presence of sub-stoichiometric amounts of KOtBu base.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号