首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51443篇
  免费   17390篇
  国内免费   63篇
化学   62077篇
晶体学   58篇
力学   2312篇
数学   3168篇
物理学   1281篇
  2024年   459篇
  2023年   4754篇
  2022年   1611篇
  2021年   2791篇
  2020年   5147篇
  2019年   2550篇
  2018年   2545篇
  2017年   656篇
  2016年   6120篇
  2015年   6107篇
  2014年   5507篇
  2013年   5724篇
  2012年   3486篇
  2011年   1175篇
  2010年   3771篇
  2009年   3714篇
  2008年   1196篇
  2007年   881篇
  2006年   177篇
  2005年   163篇
  2004年   119篇
  2003年   110篇
  1997年   108篇
  1996年   111篇
  1995年   193篇
  1994年   129篇
  1993年   256篇
  1992年   137篇
  1988年   143篇
  1987年   117篇
  1985年   125篇
  1984年   131篇
  1983年   119篇
  1982年   150篇
  1981年   177篇
  1980年   212篇
  1979年   215篇
  1978年   226篇
  1977年   338篇
  1976年   400篇
  1975年   479篇
  1974年   504篇
  1973年   328篇
  1972年   457篇
  1971年   417篇
  1970年   625篇
  1969年   459篇
  1968年   502篇
  1967年   121篇
  1963年   112篇
排序方式: 共有10000条查询结果,搜索用时 14 毫秒
991.
The migration of ions is known to be associated with various detrimental phenomena, including current density-voltage hysteresis, phase segregation, etc., which significantly limit the stability and performance of perovskite solar cells, impeding their progress toward commercial applications. To address these challenges, we propose incorporating a polymerizable organic small molecule monomer, N-carbamoyl-2-propan-2-ylpent-4-enamide (Apronal), into the perovskite film to form a crosslinked polymer (P-Apronal) through thermal crosslinking. The carbonyl and amino groups in Apronal effectively interact with shallow defects, such as uncoordinated Pb2+ and iodide vacancies, leading to the formation of high-quality films with enhanced crystallinity and reduced lattice strain. Furthermore, the introduction of P-Apronal improves energy level alignment, and facilitates charge carrier extraction and transport, resulting in a champion efficiency of 25.09 %. Importantly, P-Apronal can effectively suppress the migration of I ions and improve the long-term stability of the devices. The present strategy sets forth a path to attain long-term stability and enhanced efficiency in perovskite solar cells.  相似文献   
992.
Transition metal complexes with photoactive charge-transfer excited states are pervasive throughout the literature. In particular, [Ru(bpy)3]2+ (bpy=2,2′-bipyridine), with its metal-to-ligand charge-transfer emission, has been established as a key complex. Meanwhile, interest in so-called spin-flip metal-centered states has risen dramatically after the molecular ruby [Cr(ddpd)2]3+ (ddpd=N,N′-dimethyl-N,N′-dipyridin-2-yl-pyridine-2,6-diamine) led to design principles to access strong, long-lived emission from photostable chromium(III) complexes. This Review contrasts the properties of emissive charge-transfer and spin-flip states by using [Ru(bpy)3]2+ and [Cr(ddpd)2]3+ as prototypical examples. We discuss the relevant excited states, the tunability of their energy and lifetimes, and their response to external stimuli. Finally, we identify strengths and weaknesses of charge-transfer and spin-flip states in applications such as photocatalysis and circularly polarized luminescence.  相似文献   
993.
We report on a dendronized bis-urea macrocycle 1 self-assembling via a cooperative mechanism into two-dimensional (2D) nanosheets formed solely by alternated urea-urea hydrogen bonding interactions. The pure macrocycle self-assembles in bulk into one-dimensional liquid-crystalline columnar phases. In contrast, its self-assembly mode drastically changes in CHCl3 or tetrachloroethane, leading to 2D hydrogen-bonded networks. Theoretical calculations, complemented by previously reported crystalline structures, indicate that the 2D assembly is formed by a brick-like hydrogen bonding pattern between bis-urea macrocycles. This assembly is promoted by the swelling of the trisdodecyloxyphenyl groups upon solvation, which frustrates, due to steric effects, the formation of the thermodynamically more stable columnar macrocycle stacks. This work proposes a new design strategy to access 2D supramolecular polymers by means of a single non-covalent interaction motif, which is of great interest for materials development.  相似文献   
994.
Atomistic molecular dynamics simulations were performed under ambient conditions to explore the conformational features and binding affinities of hexameric glycosaminoglycans (GAGs) with chemokine Interleukin8 (IL8) in an aqueous medium. We tried to understand the role of hydrogen bonds (HBs) involving conserved water in mediating the interactions. The Luzar-Chandler model was adopted to study the kinetics of HB breaking and formation concerning different water-mediated HBs. The conformational flexibilities of bound GAGs are due to the flexible glycosidic linkages than the occasional/rare ring pucker conformation. The free energy landscape constructed with ϕ, and ψ, depicted that different conformational minima associated with the glycosidic linkage flexibility of the GAGs in bound states are separated by energy barriers. The binding affinities of IL8 towards GAGs are favored through the electrostatic and non-polar solvation interactions. 4-different types of conserved water were explored in the solvent-mediated binding of GAGs with IL8. The average lifetime of the IL8-GAG direct HB pairs was ∼ten times less than the IL8-GAG-shared water HBs. This is due to the rapid establishment of HB breaking and reformation kinetics involving water of a shared layer. We find that despite the highly negatively charged surface of GAGs, the IL8 surface populated by non-cationic amino acids could serve as a promising binding site in addition to the cationic surface of the protein.  相似文献   
995.
A variety of different low-coordinate iron selenide complexes is reported. These are obtained by reaction of the linear iron(I) silylamide K{18c6}[Fe(N(Dipp)SiMe3)2] (Dipp=2,6-diisopropylphenyl) with red selenium. Careful adjustment of the reaction conditions results in the formation of unique low-coordinate selenido iron complexes, namely a monoselenide bridged [2Fe−1Se]2+ complex, as well as mononuclear iron per- and triselenides. Further, C−H bond activation of one of the silylamide ligands by a putative terminal iron monoselenide is observed.  相似文献   
996.
Cyclopropane, dihydropyrrole, and azepane ring systems were synthesized conveniently from sulfinate-tethered triazoles. The divergent synthetic strategy started with the unique 1,3-sulfinate migration of an α-imino carbene. The efficient reaction allowed control of the zwitterion bearing multiple reactive sites depending on the increased stability of the resulting carbocation and anion. The sulfinate was converted to a sulfone after the group migration, and a stable anion bearing two electron-withdrawing groups was thus formed. Catalytic amounts of iodide acted as a switch for the synthesis of cyclopropanes and dihydropyrroles. The reaction merits including readily available substrates, mild reaction conditions, and excellent functional group compatibility qualified this protocol a possible synthetic tool for cyclic compounds, especially for N-heterocycles.  相似文献   
997.
Transition-metal-catalyzed oxidative C−H amination reactions are among the most attractive topics in organic synthesis to construct nitrogen-containing motifs. The challenge is that most of these reactions employed stoichiometric oxidants to achieve satisfied catalytic efficiencies. Herein, we report a Pd(II)/LA-catalyzed (LA: Lewis acid) oxidative C−H amination reaction of 2-acetaminobiphenyls to construct carbazoles by using dioxygen balloon as the sole oxidant source, and the presence of LA sharply improved the catalytic efficiency of Pd(OAc)2. Remarkably, in certain cases, the deacetylation of the annulation product happened under standard conditions to afford free carbazoles as the final product. The H/D exchange studies confirmed the reversibility of C−H activation and also disclosed multiple C−H activation sites by using −NAc and −NTs as the directing groups. In addition, the palladacycle compound was identified through 1H NMR characterizations and proved to be the intermediate prior to the carbazole formation.  相似文献   
998.
Different types of natural K+ channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K+ channels by rebuilding the core modules of natural K+ channels in artificial systems. All the channels displayed high selectivity for K+ over Na+ and exhibited a selectivity sequence of K+≈Rb+ during the transport process, which is highly consistent with the cation permeability characteristics of natural K+ channels. More importantly, these artificial channels could be efficiently inserted into cell membranes and mediate the transmembrane transport of K+, disrupting the cellular K+ homeostasis and eventually triggering the apoptosis of cells. These findings demonstrate that, by rebuilding the core modules of natural K+ channels in artificial systems, the structures, transport behaviors, and physiological functions of natural K+ channels can be mimicked in synthetic channels.  相似文献   
999.
A photocatalytic self-(3+2) cycloaddition of vinyldiazo compounds is described, which provides cyclopentene derivatives with conservation of one diazo functional group. Experimental insights and density functional theory indicate that the reaction is triggered by an unusual single electron oxidation of vinyldiazo compounds, while the photolysis for the generation of free carbene species is not involved. The synthetic applications of the resulting cyclopentenyl α-diazo compounds were demonstrated based on the rich chemistry of the diazo functional group.  相似文献   
1000.
The conical intersection (CI) governs the ultra-fast relaxation of excited states in a radiationless manner and are observed mainly in photochemical processes. In the current work, we investigated the effects of substituents on the reaction dynamics for the conversion of gauche-1,3-butadiene to bicyclobutane via photochemical electrocyclization. We incorporated both electron withdrawing (−F) and donating (−CH3) groups in the conjugated system. In our study, we optimized the minimum energy conical intersection (MECI) geometries using the multi-configurational state-averaged CASSCF approach, whereas, to study the ground state reaction pathways for the substituted derivatives, dispersion corrected, B3LYP-D3 functional was used. The non-adiabatic surface hopping molecular dynamics simulations were performed to observe the behaviour of electronic states involved throughout the photoconversion process. The results obtained from the multi-reference second-order perturbation correction of energy at the XMS-CASPT2 level of theory, topography analysis, and non-adiabatic dynamics suggest that the −CH3 substituted derivatives can undergo faster thermal conversion to the product in the ground state with a smaller activation energy barrier compared to −F substituted derivative. Our study also reveals that the GBUT to BIBUT conversion follows both conrotatory and disrotatory pathways, whereas, on substitution with −F or −CH3, the conversion proceeds via the conrotatory pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号