首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41137篇
  免费   16042篇
  国内免费   232篇
化学   53635篇
晶体学   43篇
力学   1242篇
综合类   12篇
数学   1289篇
物理学   1190篇
  2024年   425篇
  2023年   4253篇
  2022年   1466篇
  2021年   2475篇
  2020年   4727篇
  2019年   2272篇
  2018年   2432篇
  2017年   659篇
  2016年   5615篇
  2015年   5599篇
  2014年   5022篇
  2013年   5165篇
  2012年   3192篇
  2011年   1129篇
  2010年   3400篇
  2009年   3348篇
  2008年   1087篇
  2007年   772篇
  2006年   190篇
  2005年   124篇
  2004年   77篇
  2003年   67篇
  1997年   70篇
  1996年   79篇
  1995年   127篇
  1994年   87篇
  1993年   197篇
  1992年   75篇
  1991年   71篇
  1990年   59篇
  1989年   63篇
  1988年   89篇
  1987年   74篇
  1984年   57篇
  1983年   65篇
  1982年   72篇
  1981年   87篇
  1980年   103篇
  1979年   95篇
  1978年   95篇
  1977年   162篇
  1976年   183篇
  1975年   185篇
  1974年   194篇
  1973年   110篇
  1972年   153篇
  1971年   122篇
  1970年   207篇
  1969年   125篇
  1968年   133篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
Electric-discharge nitrogen comprises three main types of excited nitrogen species-atomic nitrogen (Natom), excited nitrogen molecules (N2*), and nitrogen ions (N2+) – which have different lifetimes and reactivities. In particular, the interfacial reaction locus between the discharged nitrogen and the water phase produces nitrogen compounds such as ammonia and nitrate ions (denoted as N-compounds generically); this is referred to as the plasma/liquid interfacial (P/L) reaction. The Natom amount was analyzed quantitatively to clarify the contribution of Natom to the P/L reaction. We focused on the quantitative relationship between Natom and the produced N-compounds, and found that both N2* and N2+, which are active species other than Natom, contributed to P/L reaction. The production of N-compounds from N2* and N2+ was enhanced upon UV irradiation of the water phase, but the production of N-compounds from Natom did not increase by UV irradiation. These results revealed that the P/L reactions starting from Natom and those starting from N2* and N2+ follow different mechanisms.  相似文献   
942.
943.
944.
945.
One‐dimensional (1D) transition metal oxide (TMO) nanostructures are actively pursued in spintronic devices owing to their nontrivial d electron magnetism and confined electron transport pathways. However, for TMOs, the realization of 1D structures with long‐range magnetic order to achieve a sensitive magnetoelectric response near room temperature has been a longstanding challenge. Herein, we exploit a chemical hydric effect to regulate the spin structure of 1D V–V atomic chains in monoclinic VO2 nanowires. Hydrogen treatment introduced V3+ (3d2) ions into the 1D zigzag V–V chains, triggering the formation of ferromagnetically coupled V3+–V4+ dimers to produce 1D superparamagnetic chains and achieve large room‐temperature negative magnetoresistance (?23.9 %, 300 K, 0.5 T). This approach offers new opportunities to regulate the spin structure of 1D nanostructures to control the intrinsic magnetoelectric properties of spintronic materials.  相似文献   
946.
Crystallization by particle attachment is widely observed in both natural and synthetic environments. Although this form of nonclassical crystallization is generally described by oriented attachment, random aggregation of building blocks to give single‐crystal products is also observed, but the mechanism of crystallographic realignment is unknown. We herein reveal that random attachment during aggregation‐based growth initially produces a nonoriented growth front. Subsequent evolution of the orientation is driven by the inherent surface stress applied by the disordered surface layer and results in single‐crystal formation by grain‐boundary migration. This mechanism is corroborated by measurements of orientation rate versus external stress, which demonstrated a predictive relationship between the two. These findings advance our understandings about aggregation‐based growth via nanocrystal blocks and suggest an approach to material synthesis that takes advantage of stress‐induced coalignment.  相似文献   
947.
Most Eley–Rideal abstraction reactions involve an energetic gas‐phase atom reacting directly with a surface adsorbate to form a molecular product. Molecular projectiles are generally less reactive, may dissociate upon collision with the surface, and thus more difficult to prove that they can participate intact in abstraction reactions. Here we provide experimental evidence for direct reactions occurring between molecular N2+ and O2+ projectiles and surface‐adsorbed D atoms in two steps: first, the two atoms of the diatomic molecule undergo consecutive collisions with a metal surface atom without bond rupture; and second, the rebounding molecule abstracts a surface D atom to form N2D and O2D intermediates, respectively, detected as ions. The kinematics of the collisional interaction confirms product formation by an Eley–Rideal reaction mechanism and accounts for inelastic energy losses commensurate with surface re‐ionization. Such energetic hydrogenation of dinitrogen may provide facile activation of its triple bond as a first step towards bond cleavage.  相似文献   
948.
Lanthanide‐catalyzed alkynyl exchange through C?C single‐bond cleavage assisted by a secondary amino group is reported. A lanthanide amido complex is proposed as a key intermediate, which undergoes unprecedented reversible β‐alkynyl elimination followed by alkynyl exchange and imine reinsertion. The in situ homo‐ and cross‐dimerization of the liberated alkyne can serve as an additional driving force to shift the metathesis equilibrium to completion. This reaction is formally complementary to conventional alkyne metathesis and allows the selective transformation of internal propargylamines into those bearing different substituents on the alkyne terminus in moderate to excellent yields under operationally simple reaction conditions.  相似文献   
949.
Leidenfrost levitated droplets can be used to accelerate chemical reactions in processes that appear similar to reaction acceleration in charged microdroplets produced by electrospray ionization. Reaction acceleration in Leidenfrost droplets is demonstrated for a base‐catalyzed Claisen–Schmidt condensation, hydrazone formation from precharged and neutral ketones, and for the Katritzky pyrylium into pyridinium conversion under various reaction conditions. Comparisons with bulk reactions gave intermediate acceleration factors (2–50). By keeping the volume of the Leidenfrost droplets constant, it was shown that interfacial effects contribute to acceleration; this was confirmed by decreased reaction rates in the presence of a surfactant. The ability to multiplex Leidenfrost microreactors, to extract product into an immiscible solvent during reaction, and to use Leidenfrost droplets as reaction vessels to synthesize milligram quantities of product is also demonstrated.  相似文献   
950.
Inspired by biosystems, a process is proposed for preparing next‐generation artificial polymer receptors with molecular recognition abilities capable of programmable site‐directed modification following construction of nanocavities to provide multi‐functionality. The proposed strategy involves strictly regulated multi‐step chemical modifications: 1) fabrication of scaffolds by molecular imprinting for use as molecular recognition fields possessing reactive sites for further modifications at pre‐determined positions, and 2) conjugation of appropriate functional groups with the reactive sites by post‐imprinting modifications to develop programmed functionalizations designed prior to polymerization, allowing independent introduction of multiple functional groups. The proposed strategy holds promise as a reliable, affordable, and versatile approach, facilitating the emergence of polymer‐based artificial antibodies bearing desirable functions that are beyond those of natural antibodies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号