首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58163篇
  免费   15961篇
  国内免费   163篇
化学   65409篇
晶体学   207篇
力学   1456篇
综合类   1篇
数学   4038篇
物理学   3176篇
  2024年   426篇
  2023年   4292篇
  2022年   1532篇
  2021年   2553篇
  2020年   4870篇
  2019年   2448篇
  2018年   2504篇
  2017年   765篇
  2016年   5821篇
  2015年   5728篇
  2014年   5235篇
  2013年   5837篇
  2012年   3916篇
  2011年   2169篇
  2010年   3834篇
  2009年   3666篇
  2008年   1959篇
  2007年   1724篇
  2006年   1150篇
  2005年   1080篇
  2004年   911篇
  2003年   779篇
  2002年   744篇
  2001年   273篇
  2000年   268篇
  1999年   243篇
  1998年   233篇
  1997年   301篇
  1996年   330篇
  1995年   335篇
  1994年   277篇
  1993年   419篇
  1992年   268篇
  1991年   241篇
  1987年   217篇
  1985年   248篇
  1984年   306篇
  1983年   241篇
  1982年   291篇
  1981年   325篇
  1980年   283篇
  1979年   275篇
  1978年   309篇
  1977年   321篇
  1976年   336篇
  1975年   335篇
  1974年   356篇
  1973年   250篇
  1972年   223篇
  1970年   258篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
921.
Ruthenium complexes with polypyridine ligands are very popular choices for applications in photophysics and photochemistry, for example, in lighting, sensing, solar cells, and photoredox catalysis. There is a long-standing interest in replacing ruthenium with iron because ruthenium is rare and expensive, whereas iron is comparatively abundant and cheap. However, it is very difficult to obtain iron complexes with an electronic structure similar to that of ruthenium(II) polypyridines. The latter typically have a long-lived excited state with pronounced charge-transfer character between the ruthenium metal and ligands. These metal-to-ligand charge-transfer (MLCT) excited states can be luminescent, with typical lifetimes in the range of 100 to 1000 ns, and the electrochemical properties are drastically altered during this time. These properties make ruthenium(II) polypyridine complexes so well suited for the abovementioned applications. In iron(II) complexes, the MLCT states can be deactivated extremely rapidly (ca. 50 fs) by energetically lower lying metal-centered excited states. Luminescence is then no longer emitted, and the MLCT lifetimes become much too short for most applications. Recently, there has been substantial progress on extending the lifetimes of MLCT states in iron(II) complexes, and the first examples of luminescent iron complexes have been reported. Interestingly, these are iron(III) complexes with a completely different electronic structure than that of commonly targeted iron(II) compounds, and this could mark the beginning of a paradigm change in research into photoactive earth-abundant metal complexes. After outlining some of the fundamental challenges, key strategies used so far to enhance the photophysical and photochemical properties of iron complexes are discussed and recent conceptual breakthroughs are highlighted in this invited Concept article.  相似文献   
922.
Spirocyclic compounds such as 9,9′-spirobifluorene (SBF) are becoming more and more attractive for use as host materials in organic optoelectronic devices. Herein, two dispirocycles, namely, dispiro[fluorene-9,9′-anthracene-10′,9′′-fluorene] and 10,10′′-diphenyl-10H,10′′H-dispiro[acridine-9,9′-anthracene-10′,9′′-acridine], were used for the construction of host materials 1 – 4 . The attached triphenylamino group determines the thermal, photophysical, electrochemical, and charge-transport properties, and therefore they have different electroluminescent performances. The device based on dispiro[fluorene-9,9′-anthracene-10′,9′′-fluorene] ( 2 ) and 10,10′′-diphenyl-10H,10′′H-dispiro[acridine-9,9′-anthracene-10′,9′′-acridine] ( 3 ) molecular platforms exhibited external quantum efficiencies of greater than 21 % with a very high power efficiency (≈100 lm W−1). These results demonstrate the potential of extending the application of dispirocyclic molecular platforms with inherent rigidity for developing highly efficient host materials for organic light-emitting diodes.  相似文献   
923.
A hydrogen atom transfer-directed electrochemical intramolecular C−H amination has been developed in which the N-radical species are generated at the anode, and the base required for the reaction is generated at the cathode. A broad range of valuable pyrrolidines were prepared in good yields and with high chemoselectivity. The reaction was easily scaled up in both batch and continuous flow systems.  相似文献   
924.
We develop the chemistry of boron difluoride hydrazone dyes (BODIHYs) bearing two aryl substituents and explore their properties. The low-energy absorption bands (λmax=427–464 nm) of these dyes depend on the nature of the N-aryl groups appended to the BODIHY framework. Electron-donating and extended π-conjugated groups cause a redshift, whereas electron-withdrawing groups result in a blueshift. The title compounds were weakly photoluminescent in solution and strongly photoluminescent as thin films (λPL=525–578 nm) with quantum yields of up to 18 % and lifetimes of 1.1–1.7 ns, consistent with the dominant radiative decay through fluorescence. Addition of water to THF solutions of the BODIHYs studied causes molecular aggregation which restricts intramolecular motion and thereby enhances photoluminescence. The observed photoluminescence of BODIHY thin films is likely facilitated by a similar molecular packing effect. Finally, cyclic voltammetry studies confirmed that BODIHY derivatives bearing para-substituted N-aryl groups could be reversibly oxidized (Eox1=0.62–1.02 V vs. Fc/Fc+) to their radical cation forms. Chemical oxidation studies confirmed that para-substituents at the N-aryl groups are required to circumvent radical decomposition pathways. Our findings provide new opportunities and guiding principles for the design of sought-after multifunctional boron difluoride complexes that are photoluminescent in the solid state.  相似文献   
925.
Lithiation of van der Waals tetrel-arsenides, GeAs and SiAs, has been investigated. Electrochemical lithiation demonstrated large initial capacities of over 950 mAh g−1 accompanied by rapid fading over successive cycling in the voltage range 0.01–2 V. Limiting the voltage range to 0.5–2 V achieved more stable cycling, which was attributed to the intercalation process with lower capacities. Ex situ powder X-ray diffraction confirmed complete amorphization of the samples after lithiation, as well as recrystallization of the binary tetrel-arsenide phases after full delithiation in the voltage range 0.5–2 V. Solid-state synthetic methods produce layered phases, in which Si-As or Ge-As layers are separated by Li cations. The first layered compounds in the corresponding ternary systems were discovered, Li0.9Ge2.9As3.1 and Li3Si7As8, which crystallize in the Pbam (No. 55) and P2/m (No. 10) space groups, respectively. Semiconducting layered GeAs and SiAs accommodate the extra charge from Li cations through structural rearrangement in the Si-As or Ge-As layers and eventually by replacement of the tetrel dumbbells with sets of Li atoms. Ge and Si monoarsenides demonstrated high structural flexibility and a mild ability for reversible lithiation.  相似文献   
926.
Eight corners of a double-four ring cage-type germanoxane, containing a fluoride ion, were successfully silylated by the combination of chlorosilanes and silazanes. Three different silyl groups, trimethylsilyl, dimethylsilyl, and dimethylvinylsilyl, were attached on the corners of germanoxane cage. The solubility and reactivity of the cage modified with dimethylvinylsilyl groups were significantly increased, allowing for further reaction. Hydrosilylation reaction between dimethylvinylsilylated cage geramanoxanes and dimethylsilylated cage siloxanes afforded porous solids. Functionalization of the corners of germanoxanes with silyl groups should provide valuable building blocks in various functional materials.  相似文献   
927.
In the last decade, experiment and theory have expanded our vision of non-covalent interactions (NCIs), shifting the focus from the conventional hydrogen bond to new bridging interactions involving a variety of weak donor/acceptor partners. Whereas most experimental data originate from condensed phases, the introduction of broadband (chirped-pulse) microwave fast-passage techniques has revolutionized the field of rotational spectroscopy, offering unexplored avenues for high-resolution studies in the gas phase. We present an outlook of hot topics for rotational investigations on isolated intermolecular clusters generated in supersonic jet expansions. Rotational spectra offer very detailed structural data, easily discriminating the isomeric or isotopic composition and effectively cancelling any solvent, crystal, or matrix bias. The direct comparison with quantum mechanical predictions provides insight into the origin of the inter- and intramolecular interactions with much greater precision than any other spectroscopic technique, simultaneously serving as test-bed for fine-tuning of theoretical methods. We present recent examples of rotational investigations around three topics: oligomer formation, chiral recognition, and identification of halogen, chalcogen, pnicogen, or tetrel bonds. The selected examples illustrate the benefits of rotational spectroscopy for the structural and energetic assessment of inter-/intramolecular interactions, which may help to move from fundamental research to applications in supramolecular chemistry and crystal engineering.  相似文献   
928.
929.
Numerous protocols have been developed for the functionalization of aromatic substances. Among them, the strategy by which aromatic substrates are activated in situ to generate dearomatized intermediates is highly efficient but challenging, especially in the field of asymmetric catalysis. In this Concept article, the application of some well-established chiral Lewis base catalysis, including primary/secondary amines and N-heterocyclic carbenes, that can covalently form catalyst-tethered dearomatized ortho/para-quinodimethane species with diverse heteroaryl and aryl carbonyl substrates is summarized in a number of asymmetric cycloaddition and addition reactions with diverse reagents generally having electrophilic properties. As a result, a variety of enantioenriched aromatic products with higher molecular complexity are constructed effectively through a rearomatization process.  相似文献   
930.
The promise of polyhydroxamic acid ligands for the selective chelation of the f-block elements is becoming increasingly more apparent. The initial studies of polyhydroxamic acid siderophores showed the formation of highly stable complexes with PuIV, but a higher preference for FeIII hindered effective applications. The development of synthetic routes toward highly pure and customizable ligands containing multiple hydroxamic acids allowed for the growth of new classes of compounds. Although the first round of these ligands focused on the incorporation of siderophore-like frameworks, the new synthetic strategies led to small molecules of various frameworks and even resins for applications in the field of f-block element separations and biological desorption. Unfortunately, a lack of consistent stability-constant data makes direct comparisons across this body of work difficult. More studies into the stability constants and separations of the f-block elements in a variety of pH ranges is necessary to truly realize the potential for polyhydroxamic acid ligands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号