首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74793篇
  免费   20849篇
  国内免费   2876篇
化学   77542篇
晶体学   357篇
力学   3868篇
综合类   209篇
数学   5759篇
物理学   10783篇
  2024年   584篇
  2023年   5020篇
  2022年   2420篇
  2021年   3631篇
  2020年   5949篇
  2019年   3427篇
  2018年   3267篇
  2017年   1462篇
  2016年   7058篇
  2015年   7077篇
  2014年   6676篇
  2013年   7324篇
  2012年   5442篇
  2011年   3296篇
  2010年   5136篇
  2009年   5039篇
  2008年   2757篇
  2007年   2264篇
  2006年   1476篇
  2005年   1196篇
  2004年   941篇
  2003年   801篇
  2002年   772篇
  2001年   580篇
  2000年   532篇
  1999年   572篇
  1998年   494篇
  1997年   542篇
  1996年   594篇
  1995年   586篇
  1994年   532篇
  1993年   555篇
  1992年   403篇
  1991年   347篇
  1990年   251篇
  1989年   228篇
  1988年   267篇
  1987年   226篇
  1980年   235篇
  1978年   229篇
  1977年   342篇
  1976年   399篇
  1975年   485篇
  1974年   507篇
  1973年   329篇
  1972年   459篇
  1971年   416篇
  1970年   626篇
  1969年   459篇
  1968年   517篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
Since the concept of aggregation-induced emission (AIE) was proposed by Benzhong Tang's research group in 2001, the exploration of the mechanism of AIE and the development of new high-performance AIE materials have been the focus and goal of this field. On the basis of a large number of experiment results, AIE mechanism has been well explained by lots of works, such as restricted intramolecular motion (RIM), J-aggregate et al. As tetraphenylethlene (TPE) molecules are stacked, the rotation of the benzene ring rotor is blocked, and the energy attenuation is released in the form of radiation, showing the AIE effect. In order to further explore the AIE effect of TPE, we performed electronic structure, spectrum simulation, and AIE mechanism calculations of the anthryl-tetraphenylethene (TPE-an) monomer and dimer in the gas phase, tetrahydrofuran (THF), and aqueous solutions at the B3LYP/6-31G** level. The calculation results show that TPE-an molecule is in a propeller-like configuration, and its fluorescence intensity is weak; compared with the monomer, the fluorescence intensity of the dimer increases by 87% in aqueous solution; the fluorescence intensity in the gas phase, THF solution, and aqueous solution gradually enhances with the increase of the degree of aggregation, which are consistent with the experimental results. The enhancement of fluorescence intensity is caused by the change of molecular structure caused by aggregation. This detailed AIE luminescence mechanism will provide theoretical guidance for AIE material design.  相似文献   
12.
Several mechanochemically heated processes have been published in recent years. However, precise control over the mechanochemical catalysed coupling reactions remained elusive. A recent report from Leitch, Browne and co-workers demonstrated how a programmable jar heater manifold delivers an efficient methodology for the Suzuki–Miyaura-type cross coupling reaction of aryl sulfamates and aryl boronic acid species. This methodology can be readily upscaled 200-fold using twin-screw extrusion methodologies.  相似文献   
13.
Renewable H2 production by water electrolysis has attracted much attention due to its numerous advantages. However, the energy consumption of conventional water electrolysis is high and mainly driven by the kinetically inert anodic oxygen evolution reaction. An alternative approach is the coupling of different half-cell reactions and the use of redox mediators. In this review, we, therefore, summarize the latest findings on innovative electrochemical strategies for H2 production. First, we address redox mediators utilized in water splitting, including soluble and insoluble species, and the corresponding cell concepts. Second, we discuss alternative anodic reactions involving organic and inorganic chemical transformations. Then, electrochemical H2 production at both the cathode and anode, or even H2 production together with electricity generation, is presented. Finally, the remaining challenges and prospects for the future development of this research field are highlighted.  相似文献   
14.
Dopamine (DA) plays an essential role in the central nervous, renal, hormonal and cardiovascular systems. Various modified carbon nanotubes (CNT)-based dopamine sensors have been reported, but inexpensive, highly sensitive plain CNT-based ones are seldom studied. In this work, a facile and inexpensive CNT-based DA sensor is made by rich-defect multi-walled carbon nanotubes (RD-CNT) via an ultrasound method. The defect and elemental states of the RD-CNT are systematically studied by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), Raman spectroscopy, X-ray powder diffraction (XRD) and X-ray-photoelectron spectroscopy (XPS). Results show that massive holes and cracks exist in RD-CNT. The level of defects increases from the additional exposed edges. The electrochemical characterizations indicate that the electrochemical sensor has the highest sensitivity of 438.4 μA/(μM ⋅ cm2) among all carbon materials-based DA sensors while well meeting the clinically required detection range and selectivity. The DA sensor was further used to detect live healthy human serum and live PC12 cells with satisfactory results, thus holding great promise for an inexpensive but sensitive DA sensor in practical applications of clinical diagnosis and biological research.  相似文献   
15.
Glutathione (GSH-reduced form) is a tripeptide that plays a vital role as an antioxidant to remove xenobiotics in the human body and changes in GSH levels are a marker for the progression of various diseases. In this context, a highly sensitive non-enzymatic electrochemical biosensor for the detection of GSH has been developed using reduced graphene oxide Manganese oxide (rGMnO) nanocomposite as the nano-interface. Initially, graphene oxide was synthesized by Hummer's method and then thermally reduced in the presence of MnO2 in a blast furnace to obtain rGMnO nanocomposite. The nanocomposite was characterized to validate its structure and morphological properties via Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman, and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry and amperometry studies showed that upon the addition of GSH, the Pt/rGMnO modified working electrode exhibited a linear response in the range of 1–100 μM at an input voltage of −0.62 V. The developed sensor was found to have a sensitivity of 0.3256 μA μM−1 and LOD of 970 nM with a recovery of 92–104 % in real blood serum samples.  相似文献   
16.
Direct C−H bond functionalization is a useful strategy for the straightforward formation of C−C and C−Heteroatom bonds. In the present work, a unique approach for the challenging electrophilic Au-catalyzed α-C−H bond functionalization of tertiary amines is presented. Electronic, steric and conformational synergistic effects exerted by the use of a malonate unit in the substrate were key to the success of this transformation. This new reactivity was applied to the synthesis of tetrahydro-γ-carboline products which, under oxidative conditions, could be converted into valuable structural motifs found in bioactive alkaloid natural products.  相似文献   
17.
Tetrafluoroborate (BF4) has long been used as a spectator counter anion. Herein, we report an unprecedented salt metathesis between a variety of BF4 salts and a series of organoboronic acids yielding the corresponding organotrifluoroborates. We identified conditions for fast and efficient fluoridation (<1 h) with minimal workup. Fundamentally, this work discloses the proclivity of BF4 to exchange fluoride atoms with organoboronates, highlighting the lability of BF4.  相似文献   
18.
The accumulation of the amyloid-β peptides (Aβ) is central to the development of Alzheimer's disease. The mechanism by which Aβ triggers a cascade of events that leads to dementia is a topic of intense investigation. Aβ self-associates into a series of complex assemblies with different structural and biophysical properties. It is the interaction of these oligomeric, protofibril and fibrillar assemblies with lipid membranes, or with membrane receptors, that results in membrane permeability and loss of cellular homeostasis, a key event in Alzheimer's disease pathology. Aβ can have an array of impacts on lipid membranes, reports have included: a carpeting effect; a detergent effect; and Aβ ion-channel pore formation. Recent advances imaging these interactions are providing a clearer picture of Aβ induced membrane disruption. Understanding the relationship between different Aβ structures and membrane permeability will inform therapeutics targeting Aβ cytotoxicity.  相似文献   
19.
Facile access to dimeric heavier aluminum chalcogenides [(NHC)Al(Tipp)-μ-Ch]2 (NHC=IiPr (1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene, IMe4 (1,3,4,5-tetramethylimidazol-2-ylidene); Tipp=2,4,6-iPr3C6H2; Ch=Se, Te) by treatment of NHC-stabilized aluminum dihydrides with elemental Se and Te is reported. The higher affinity of IMe4 in comparison with IiPr toward the Al center in [(NHC)Al(Tipp)-μ-Ch]2 can be used for ligand exchange. Additionally, the presence of excess IMe4 allows for cleavage of the dimers to form a rare example of a neutral multiply bonded heavier aluminum chalcogenide in the form of a tetracoordinate aluminum complex, (IMe4)2(Tipp)Al=Te. This species reacts with three equivalents of CO2 across two Al−CNHC and the Al=Te bond affording a pentacoordinate aluminum complex containing a dianionic tellurocarbonate ligand [CO2Te]2−, which is the first example of tellurium analogue of a carbonate [CO3]2−.  相似文献   
20.
A ferrocene surfactant can be switched between single and double head form (FcN+C12/Fc+N+C12) triggered by redox reaction. FcN+C12 can neither stabilize an O/W emulsion alone nor an oil-in-dispersion emulsion in combination with alumina nanoparticles due to the steric hindrance of the ferrocene group. However, such steric hindrance can be overcome by increasing the charge density in Fc+N+C12, so that oil-in-dispersion emulsions can be co-stabilized by Fc+N+C12 and alumina nanoparticles at very low concentrations (1×10−7 M (≈50 ppb) and 0.001 wt %, respectively). Not only can reversible formation/destabilization of oil-in-dispersion emulsions be achieved by redox reaction, but also reversible transformation between oil-in-dispersion emulsions and Pickering emulsions can be obtained through reversing the charge of alumina particles by adjusting the pH. The results provide a new protocol for the design of surfactants for stabilization of smart oil-in-dispersion emulsions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号