首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64377篇
  免费   19194篇
  国内免费   1400篇
化学   70731篇
晶体学   228篇
力学   3126篇
综合类   67篇
数学   4882篇
物理学   5937篇
  2024年   492篇
  2023年   4908篇
  2022年   2129篇
  2021年   3324篇
  2020年   5650篇
  2019年   3084篇
  2018年   2965篇
  2017年   1079篇
  2016年   6684篇
  2015年   6708篇
  2014年   6156篇
  2013年   6678篇
  2012年   4652篇
  2011年   2342篇
  2010年   4511篇
  2009年   4471篇
  2008年   2077篇
  2007年   1616篇
  2006年   850篇
  2005年   777篇
  2004年   562篇
  2003年   469篇
  2002年   441篇
  2001年   369篇
  2000年   314篇
  1999年   322篇
  1998年   223篇
  1997年   247篇
  1996年   293篇
  1995年   347篇
  1994年   251篇
  1993年   371篇
  1992年   226篇
  1991年   180篇
  1988年   200篇
  1987年   162篇
  1981年   187篇
  1980年   215篇
  1979年   214篇
  1978年   222篇
  1977年   338篇
  1976年   404篇
  1975年   489篇
  1974年   503篇
  1973年   325篇
  1972年   460篇
  1971年   423篇
  1970年   630篇
  1969年   464篇
  1968年   504篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
Through the combination of the divergent and convergent approaches, coupled with the utilization of the powerful Sharpless “click‐chemistry” reaction, two series of sulfonyl‐based high‐generation NLO dendrimers were conveniently prepared with high purity and in satisfactory yields. Thanks to the perfect three‐dimensional (3D) spatial isolation from the highly branched structure and the isolation effect of the exterior benzene moieties and the interior triazole rings, these dendrimers exhibited large second harmonic generation coefficient (d33) values up to 181 pm V?1, which, to the best of our knowledge, is the highest value so far for polymers containing sulfonyl‐based chromophore moieties. Meanwhile, compared with the nitro‐chromophore‐based analogues, their optical transparency and NLO stability were improved in a large degree, due to the lower dipole moment (μ) and the special main‐chain structure of sulfonyl‐based chromophore in these dendrimers.  相似文献   
942.
The structures of three newly synthesized phosphonate‐substituted polyoxotitanates are reported. The Ti/O core of [Ti4O(OEt)12(PhenylPO3)] ( 1 ) is the building block for two larger phosphonate‐substituted nanoclusters, [Ti25O26(OEt)36(PhenylPO3)6] ( 2 ) and [Ti26O26(OEt)39(PhenylPO3)6]Br ( 3 ). All compounds exhibit a not previously recognized triply bridging binding mode of the phosphonate anchor with short connecting Ti? O bonds, the average of which is 2.010(7) Å. Comparison with previously reported work suggests that the binding mode of the phosphonate anchor is strongly dependent on the structure of the underlying substrate.  相似文献   
943.
944.
945.
946.
Various thermally stable energetic polynitro‐aryl‐1,2,3‐triazoles have been synthesized through Cu‐catalyzed [3+2] cycloaddition reactions between their corresponding azides and alkynes, followed by nitration. These compounds were characterized by analytical and spectroscopic methods and the solid‐state structures of most of these compounds have been determined by using X‐ray diffraction techniques. Most of the polynitro‐bearing triazole derivatives decomposed within the range 142–319 °C and their heats of formation and crystal densities were determined from computational studies. By using the Kamlet–Jacobs empirical relation, their detonation velocities and pressures were calculated from their heats of formation and crystal densities. Most of these newly synthesized compounds exhibited high positive heats of formation, good thermal stabilities, reasonable densities, and acceptable detonation properties that were comparable to those of TNT.  相似文献   
947.
Hydrated CaCl2, LiI, and MgCl2 salts induce self‐assembly in nonionic surfactants (such as C12H25(OCH2CH2)10OH) to form lyotropic liquid‐crystalline (LLC) mesophases that undergo a phase transition to a new type of soft mesocrystal (SMC) under ambient conditions. The SMC samples can be obtained by aging the LLC samples, which were prepared as thin films by spin‐coating, dip‐coating, or drop‐casting of a clear homogenized solution of water, salt, and surfactant over a substrate surface. The LLC mesophase exists up to a salt/surfactant mole ratio of 8, 10, and 4 (corresponding to 59, 68, and 40 wt % salt/surfactant) in the CaCl2, LiI, and MgCl2 mesophases, respectively. The SMC phase can transform back to a LLC mesophase at a higher relative humidity. The phase transformations have been monitored using powder X‐ray diffraction (PXRD), polarized optical microscopy (POM), and FTIR techniques. The LLC mesophases only diffract at small angles, but the SMCs diffract at both small and wide angles. The broad surfactant features in the FTIR spectra of the LLC mesophases become sharp and well resolved upon SMC formation. The unit cell of the mesophases expands upon SMC transformation, in which the expansion is largest in the MgCl2 and smallest in the CaCl2 systems. The POM images of the SMCs display birefringent textures with well‐defined edges, similar to crystals. However, the surface of the crystals is highly patterned, like buckling patterns, which indicates that these crystals are quite soft. This unusual phase behavior could be beneficial in designing new soft materials in the fields of phase‐changing materials and mesostructured materials, and it demonstrates the richness of the phase behavior in the salt–surfactant mesophases.  相似文献   
948.
Microporous vanadosilicates with octahedral VO6 and tetrahedral SiO4 units, better known as AM‐6, have been hydrothermally synthesized with different morphologies by controlling the Na/K molar ratio of the initial gel mixtures. The morphology of the AM‐6 materials changed from bulky cube to nanofiber aggregates as the Na/K molar ratio decreased from 1.9 to 0.2. Raman spectroscopy revealed that the VO3? intermediate species plays an important role in the formation of the nanofiber morphology. The orientation of ‐V‐O‐V‐ chains in nanofiber aggregates was examined by confocal polarized micro‐Raman spectroscopy. It was found that these aggregates are assemblies of short ‐V‐O‐V‐ chains perpendicular to the axis of nanofibers. The obtained AM‐6 nanofibers greatly increase the exposed proportion of V? O terminals, and thus improve the catalytic performance.  相似文献   
949.
The band structure of multicomponent semiconductor photocatalysts, as well as their reactivity distinction under different wavelengths of light, is still unclear. BiOBr, which is a typical multicomponent semiconductor, may have two possible valence‐band structures, that is, two discrete valence bands constructed respectively from O 2p and Br 4p orbitals, or one valence band derived from the hybridization of these orbitals. In this work, aqueous photocatalytic hydroxylation is applied as the probe reaction to investigate the nature and reactions of photogenerated holes in BiOBr. Three organic compounds (microcystin‐LR, aniline, and benzoic acid) with different oxidation potentials were selected as substrates. Isotope labeling (H218O as the solvent) was used to determine the source of the O atom in the hydroxyl group of the products, which distinguishes the contribution of different hydroxylation pathways. Furthermore, a spin‐trapping ESR method was used to quantify the reactive oxygen species (.OH and .OOH) formed in the reaction system. The different isotope abundances of the hydroxyl O atom of the products formed, as well as the reverse trend of the .OH/.OOH ratio with the oxidative resistance of the substrate under UV and visible irradiation, reveal that BiOBr has two separate valence bands, which have different oxidation ability and respond to UV and visible light, respectively. This study shows that the band structure of semiconductor photocatalysts can be reliably analyzed with an isotope labeling method.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号