全文获取类型
收费全文 | 53085篇 |
免费 | 17399篇 |
国内免费 | 63篇 |
专业分类
化学 | 63145篇 |
晶体学 | 58篇 |
力学 | 2337篇 |
综合类 | 1篇 |
数学 | 3556篇 |
物理学 | 1450篇 |
出版年
2024年 | 459篇 |
2023年 | 4755篇 |
2022年 | 1610篇 |
2021年 | 2794篇 |
2020年 | 5144篇 |
2019年 | 2553篇 |
2018年 | 2550篇 |
2017年 | 666篇 |
2016年 | 6130篇 |
2015年 | 6116篇 |
2014年 | 5524篇 |
2013年 | 5776篇 |
2012年 | 3519篇 |
2011年 | 1174篇 |
2010年 | 3769篇 |
2009年 | 3731篇 |
2008年 | 1193篇 |
2007年 | 877篇 |
2006年 | 180篇 |
2005年 | 144篇 |
1997年 | 131篇 |
1996年 | 130篇 |
1995年 | 222篇 |
1994年 | 164篇 |
1993年 | 281篇 |
1992年 | 154篇 |
1991年 | 129篇 |
1989年 | 123篇 |
1988年 | 168篇 |
1987年 | 150篇 |
1986年 | 123篇 |
1985年 | 156篇 |
1984年 | 174篇 |
1983年 | 147篇 |
1982年 | 194篇 |
1981年 | 216篇 |
1980年 | 247篇 |
1979年 | 243篇 |
1978年 | 281篇 |
1977年 | 391篇 |
1976年 | 438篇 |
1975年 | 513篇 |
1974年 | 532篇 |
1973年 | 366篇 |
1972年 | 483篇 |
1971年 | 457篇 |
1970年 | 649篇 |
1969年 | 471篇 |
1968年 | 520篇 |
1967年 | 137篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Dr. Shi Tang Dr. Zhi Wang Yanzi Xu Huili Ma Dr. Jia Wang Dr. Christian Larsen Prof. Dongfeng Dang Prof. Ergang Wang Prof. Ludvig Edman 《Angewandte Chemie (International ed. in English)》2023,62(23):e202302874
The emission efficiency of organic semiconductors (OSCs) often suffers from aggregation caused quenching (ACQ). An elegant solution is aggregation-induced emission (AIE), which constitutes the design of the OSC so that its morphology inhibits quenching π–π interactions and non-radiative motional deactivation. The light-emitting electrochemical cell (LEC) can be sustainably fabricated, but its function depends on motion of bulky ions in proximity of the OSC. It is therefore questionable whether the AIE morphology can be retained during LEC operation. Here, we synthesize two structurally similar OSCs, which are distinguished by that 1 features ACQ while 2 delivers AIE. Interestingly, we find that the AIE-LEC significantly outperforms the ACQ-LEC. We rationalize our finding by showing that the AIE morphology remains intact during LEC operation, and that it can feature appropriately sized free-volume voids for facile ion transport and suppressed non-radiative excitonic deactivation. 相似文献
992.
Dr. Christopher J. Smedley Dr. Marie-Claire Giel Dr. Thomas Fallon Prof. Dr. John E. Moses 《Angewandte Chemie (International ed. in English)》2023,62(30):e202303916
We present the synthesis of 1,1-bis(fluorosulfonyl)-2-(pyridin-1-ium-1-yl)ethan-1-ide, a bench-stable precursor to ethene-1,1-disulfonyl difluoride (EDSF). The novel SuFEx reagent, EDSF, is demonstrated in the preparation of 26 unique 1,1-bissulfonylfluoride substituted cyclobutenes via a cycloaddition reaction. The regioselective click cycloaddition reaction is rapid, straightforward, and highly efficient, enabling the generation of highly functionalized 4-membered ring (4MR) carbocycles. These carbocycles are valuable structural motifs found in numerous bioactive natural products and pharmaceutically relevant small molecules. Additionally, we showcase diversification of the novel cyclobutene cores through selective Cs2CO3-activated SuFEx click chemistry between a single S−F group and an aryl alcohol, yielding the corresponding sulfonate ester products with high efficiency. Finally, density functional theory calculations offer mechanistic insights about the reaction pathway. 相似文献
993.
Tao Song Dr. Da Wang Prof. Hongxia Wang Dr. Jia Yu Prof. Siqi Shi 《Angewandte Chemie (International ed. in English)》2023,62(31):e202305004
Integrating the advantages of both inorganic ceramic and organic polymer solid-state electrolytes, small-molecule solid-state electrolytes represented by LiI-3-hydroxypropionitrile (LiI-HPN) inorganic–organic hybrid systems possess good interfacial compatibility and high modulus. However, their lack of intrinsic Li+ conduction ability hinders potential application in lithium metal batteries until now, despite containing LiI phase composition. Herein, inspired by evolution tendency of ionic conduction behaviors together with first-principles molecular dynamics simulations, we propose a stepped-amorphization strategy to break the Li+ conduction bottleneck of LiI-HPN. It involves three progressive steps of composition (LiI-content increasing), time (long-time standing), and temperature (high-temperature melting) regulations, to essentially construct a small-molecule-based composite solid-state electrolyte with intensified amorphous degree, which realizes efficient conversion from an I− to Li+ conductor and improved conductivity. As a proof, the stepped-optimized LiI-HPN is successfully operated in lithium metal batteries cooperated with Li4Ti5O12 cathode to deliver considerable compatibility and stability over 250 cycles. This work not only clarifies the ionic conduction mechanisms of LiI-HPN inorganic–organic hybrid systems, but also provides a reasonable strategy to broaden the application scenarios of highly compatible small-molecule solid-state electrolytes. 相似文献
994.
Wei Zheng Prof. XuPing Li Dr. Glib V. Baryshnikov Xueru Shan Dr. Farhan Siddique Dr. Cheng Qian Prof. Shengyin Zhao Prof. Hongwei Wu 《Angewandte Chemie (International ed. in English)》2023,62(32):e202305925
It is challenging to achieve stable and efficient radical emissions under ambient conditions. Herein, we present a rational design strategy to protect photoinduced carbonyl free radical emission through electrostatic interaction and spin delocalization effects. The host-guest system is constructed from tricarbonyl-substituted benzene molecules and a series of imidazolium ionic liquids as the guest and host, respectively, whereby the carbonyl anion radical emission can be in situ generated under the light irradiation and further stabilized by electrostatic interaction. More importantly, the anion species and the alkyl chain length of imidazolium ionic liquids show a noticeable effect on luminescence efficiency, with the highest radical emission efficiency is as high as 53.3 % after optimizing the imidazole ionic liquid's structure, which is about four times higher than the polymer-protected radical system. Theoretical calculations confirm the synergistic effect of strong electrostatic interactions and that the spin delocalization effect significantly stabilizes the radical emission. Moreover, such a radical emission system also could be integrated with a fluorescent dye to induce multi-color or even white light emission with reversible temperature-responsive characteristics. The radical emission system can also be used to detect different amine compounds on the basis of the emission changes and photoactivation time. 相似文献
995.
Dr. Greggory T. Kent Emily Morgan Kaitlin R. Albanese Dr. Anna Kallistova Dr. Alexandra Brumberg Linus Kautzsch Dr. Guang Wu Prof. Pratap Vishnoi Prof. Ram Seshadri Prof. Anthony K. Cheetham 《Angewandte Chemie (International ed. in English)》2023,62(32):e202306000
Halide double perovskites [A2MIMIIIX6] are an important class of materials that have garnered substantial interest as non-toxic alternatives to conventional lead iodide perovskites for optoelectronic applications. While numerous studies have examined chloride and bromide double perovskites, reports of iodide double perovskites are rare, and their definitive structural characterization has not been reported. Predictive models have aided us here in the synthesis and characterization of five iodide double perovskites of general formula Cs2NaLnI6 (Ln=Ce, Nd, Gd, Tb, Dy). The complete crystal structures, structural phase transitions, optical, photoluminescent, and magnetic properties of these compounds are reported. 相似文献
996.
Guodong Chen Jinran Sun Jiedong Li Dr. Xiaofan Du Gaojie Xu Prof. Shanmu Dong Prof. Guanglei Cui 《Angewandte Chemie (International ed. in English)》2023,62(31):e202306141
The Germanium (Ge), as a fast-charging and high specific capacity (1568 mAh g−1) alloy anode, is greatly hampered in practical application by poor cyclability. To date, the understanding of cycling performance degradation remains elusive. This study illustrates that, contrary to conventional beliefs, most of the Ge material in failed anodes still retains good integrity and does not undergo severe pulverization. It is revealed that capacity degradation is clearly correlated to the interfacial evolution of lithium hydride (LiH). Tetralithium germanium hydride (Li4Ge2H), as a new species derived from LiH, is identified as the culprit of Ge anode degradation, which is the dominant crystalized component in an ever-growing and ever-insulating interphase. The significantly increased thickness of the solid electrolyte interface (SEI) is accompanied by the accumulation of insulating Li4Ge2H upon cycling, which severely retards the charge transport process and ultimately triggers the anode failure. We believe that the comprehensive understanding of the failure mechanism presented in this study is of great significance to promoting the design and development of alloy anode for the next generation of lithium-ion batteries. 相似文献
997.
Jiahui Xian Suisheng Li Hui Su Peisen Liao Shihan Wang Runan Xiang Yawei Zhang Prof. Qinghua Liu Prof. Guangqin Li 《Angewandte Chemie (International ed. in English)》2023,62(30):e202306726
The conversion of industrial exhaust gases of nitrogen oxides into high-value products is significantly meaningful for global environment and human health. And green synthesis of amino acids is vital for biomedical research and sustainable development of mankind. Herein, we demonstrate an innovative approach for converting nitric oxide (NO) to a series of α-amino acids (over 13 kinds) through electrosynthesis with α-keto acids over self-standing carbon fiber membrane with CoFe alloy. The essential leucine exhibits a high yield of 115.4 μmol h−1 corresponding a Faradaic efficiency of 32.4 %, and gram yield of products can be obtained within 24 hours in lab as well as an ultra-long stability (>240 h) of the membrane catalyst, which could convert NO into NH2OH rapidly attacking α-keto acid and subsequent hydrogenation to form amino acid. In addition, this method is also suitable for other nitrogen sources including gaseous NO2 or liquidus NO3− and NO2−. Therefore, this work not only presents promising prospects for converting nitrogen oxides from exhaust gas and nitrate-laden waste water into high-value products, but also has significant implications for synthetizing amino acids in biomedical and catalytic science. 相似文献
998.
Dr. Meng Lu Shuai-Bing Zhang Ming-Yi Yang Yu-Fei Liu Jia-Peng Liao Pei Huang Dr. Mi Zhang Prof. Shun-Li Li Prof. Zhong-Min Su Prof. Ya-Qian Lan 《Angewandte Chemie (International ed. in English)》2023,62(31):e202307632
In this work, we innovatively assembled two types of traditional photosensitizers, that is pyridine ruthenium/ferrum (Ru(bpy)32+/Fe(bpy)32+) and porphyrin/metalloporphyrin complex (2HPor/ZnPor) by covalent linkage to get a series of dual photosensitizer-based three-dimensional metal-covalent organic frameworks (3D MCOFs), which behaved strong visible light-absorbing ability, efficient electron transfer and suitable band gap for highly efficient photocatalytic hydrogen (H2) evolution. Rubpy-ZnPor COF achieved the highest H2 yield (30 338 μmol g−1 h−1) with apparent quantum efficiency (AQE) of 9.68 %@420 nm, which showed one of the best performances among all reported COF based photocatalysts. Furthermore, the in situ produced H2 was successfully tandem used in the alkyne hydrogenation with ≈99.9 % conversion efficiency. Theoretical calculations reveal that both the two photosensitizer units in MCOFs can be photoexcited and thus contribute optimal photocatalytic activity. This work develops a general strategy and shows the great potential of using multiple photosensitive materials in the field of photocatalysis. 相似文献
999.
Xiang-Zhu Wei Tian-Yu Ding Dr. Yang Wang Dr. Bing Yang Dr. Qing-Qing Yang Prof. Dr. Shengfa Ye Prof. Dr. Chen-Ho Tung Prof. Dr. Li-Zhu Wu 《Angewandte Chemie (International ed. in English)》2023,62(36):e202308192
High-valent iron-oxo species are appealing for conducting O−O bond formation for water oxidation reactions. However, their high reactivity poses a great challenge to the dissection of their chemical transformations. Herein, we introduce an electron-rich and oxidation-resistant ligand, 2-[(2,2′-bipyridin)-6-yl]propan-2-ol to stabilize such fleeting intermediates. Advanced spectroscopies and electrochemical studies demonstrate a high-valent FeV(O) species formation in water. Combining kinetic and oxygen isotope labelling experiments and organic reactions indicates that the FeV(O) species is responsible for O−O bond formation via water nucleophilic attack under the real catalytic water oxidation conditions. 相似文献
1000.
Xiaofang Bai Xiuping Zhang Yujiao Sun Mingcheng Huang Prof. Dr. Jiantao Fan Prof. Dr. Shaoyi Xu Prof. Dr. Hui Li 《Angewandte Chemie (International ed. in English)》2023,62(38):e202308704
To date, only a few noble metal oxides exhibit the required efficiency and stability as oxygen evolution reaction (OER) catalysts under the acidic, high-voltage conditions that exist during proton exchange membrane water electrolysis (PEMWE). The high cost and scarcity of these catalysts hinder the large-scale application of PEMWE. Here, we report a novel OER electrocatalyst for OER comprised of uniformly dispersed Ru clusters confined on boron carbon nitride (BCN) support. Compared to RuO2, our BCN-supported catalyst shows enhanced charge transfer. It displays a low overpotential of 164 mV at a current density of 10 mA cm−2, suggesting its excellent OER catalytic activity. This catalyst was able to operate continuously for over 12 h under acidic conditions, whereas RuO2 without any support fails in 1 h. Density functional theory (DFT) calculations confirm that the interaction between the N on BCN support and Ru clusters changes the adsorption capacity and reduces the OER energy barrier, which increases the electrocatalytic activity of Ru. 相似文献