首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300978篇
  免费   19459篇
  国内免费   1650篇
化学   201430篇
晶体学   3541篇
力学   11791篇
综合类   62篇
数学   33439篇
物理学   71824篇
  2023年   5025篇
  2022年   2903篇
  2021年   4463篇
  2020年   6981篇
  2019年   4766篇
  2018年   5206篇
  2017年   3495篇
  2016年   10074篇
  2015年   8741篇
  2014年   9432篇
  2013年   15679篇
  2012年   12880篇
  2011年   12700篇
  2010年   11268篇
  2009年   10887篇
  2008年   11873篇
  2007年   11538篇
  2006年   10392篇
  2005年   9589篇
  2004年   8459篇
  2003年   7392篇
  2002年   7256篇
  2001年   7233篇
  2000年   5577篇
  1999年   4110篇
  1998年   3444篇
  1997年   3499篇
  1996年   3538篇
  1995年   3129篇
  1994年   3191篇
  1993年   3181篇
  1992年   3277篇
  1991年   3268篇
  1990年   3024篇
  1989年   2923篇
  1988年   2907篇
  1987年   2839篇
  1985年   3772篇
  1984年   3818篇
  1983年   3195篇
  1982年   3515篇
  1981年   3265篇
  1980年   3108篇
  1979年   3239篇
  1978年   3447篇
  1977年   3586篇
  1976年   3662篇
  1975年   3431篇
  1974年   3551篇
  1973年   3413篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
The results of experimental investigations on thermal nonequilibrium ionization in CO2: N2: He mixtures are presented. Measurements of electron density, ne, in vibrationally excited nitrogen were made in a supersonic flow with different CO2 contents as well as in a CO2: N2: He = 1 : 5 : 4 mixture laser gas. The mixtures were heated in a shock tube and expanded through a supersonic nozzle. Furthermore, supersonic mixing of N2 and CO2 + He was used in some experiments. The measured values of ne in the plenum chamber and in the supersonic nozzle are reported, and the processes responsible for nonequilibrium ionization in a laser-active medium are discussed.  相似文献   
12.
The rate constants k1 for the reaction of CF3CF2CF2CF2CF2CHF2 with OH radicals were determined by using both absolute and relative rate methods. The absolute rate constants were measured at 250–430 K using the flash photolysis–laser‐induced fluorescence (FP‐LIF) technique and the laser photolysis–laser‐induced fluorescence (LP‐LIF) technique to monitor the OH radical concentration. The relative rate constants were measured at 253–328 K in an 11.5‐dm3 reaction chamber with either CHF2Cl or CH2FCF3 as a reference compound. OH radicals were produced by UV photolysis of an O3–H2O–He mixture at an initial pressure of 200 Torr. Ozone was continuously introduced into the reaction chamber during the UV irradiation. The k1 (298 K) values determined by the absolute method were (1.69 ± 0.07) × 10?15 cm3 molecule?1 s?1 (FP‐LIF method) and (1.72 ± 0.07) × 10?15 cm3 molecule?1 s?1 (LP‐LIF method), whereas the K1 (298 K) values determined by the relative method were (1.87 ± 0.11) × 10?15 cm3 molecule?1 s?1 (CHF2Cl reference) and (2.12 ± 0.11) × 10?15 cm3 molecule?1 s?1 (CH2FCF3 reference). These data are in agreement with each other within the estimated experimental uncertainties. The Arrhenius rate constant determined from the kinetic data was K1 = (4.71 ± 0.94) × 10?13 exp[?(1630 ± 80)/T] cm3 molecule?1 s?1. Using kinetic data for the reaction of tropospheric CH3CCl3 with OH radicals [k1 (272 K) = 6.0 × 10?15 cm3 molecule?1 s?1, tropospheric lifetime of CH3CCl3 = 6.0 years], we estimated the tropospheric lifetime of CF3CF2CF2CF2CF2CHF2 through reaction with OH radicals to be 31 years. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 26–33, 2004  相似文献   
13.
A homologous series of azomesogens, 2″-[4-(4′-n-alkoxybenzoyloxy)-2-chlorophenylazo] naphthalenes, with lateral chloro groups was synthesised. All the homologues synthesized exhibit enantiotropic nematic mesophase. The mesomorphic properties of the present series are compared with other structurally related series to evaluate the effect of lateral chloro group and its position on mesomorphism This paper was presented at the 10th National Conference on Liquid Crystals held at Bangalore, India during 9–11 October 2003.  相似文献   
14.
15.
16.
17.
A time discrete scheme is used to approximate the solution toa phase field system of Penrose–Fife type with a non-conservedorder parameter. An a posteriori error estimate is presentedthat allows the estimation of the difference between continuousand semidiscrete solutions by quantities that can be calculatedfrom the approximation and given data.  相似文献   
18.
Hetero‐bimetallic Fe(II) alkoxide/aryloxides were evaluated as initiators for the ring‐opening polymerization of rac‐lactide. [(THF)NaFe(OtBu)3]2 ( 1 ) and [(THF)4Na2Fe(2,6‐diisopropylphenolate)4] ( 2 ) (THF = tetrahydrofuran) both polymerized lactide efficiently at room temperature, with complex 1 affording better control over the molecular weight parameters of the resultant polymer. At conversions below 70%, a linear increase in molecular weight with conversion was observed, indicative of a well‐controlled polymerization process. Complex 2 is the first example of a dianionic Fe(II) alkoxide and has been structurally characterized to reveal a distorted square planar FeO4 array in which both Na counterions bridge two aryloxide ligands and are further complexed by two THF ligands. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3798–3803, 2003  相似文献   
19.
We study the infrared emission at 1.54 μm of an organolanthanide complex, Er(III)-tetraphenylporphyrin [Er(TPP)acac], both as a result of direct optical excitation and via energy transfer from host π-conjugate polymers of type poly(arylene–ethynylene) [PAE]. In the first case, the emission of the neat complex is characterized in inert transparent materials and a value of the quantum yield at 1.54 μm φIR=4×10−4 is measured. Then, fluorescence resonance transfer is investigated in blends of Er(TPP)acac with PAEs by monitoring the quenching of the polymer fluorescence along with the enhancement of both the visible emission of the ligand and the near-infrared band of Er3+. These different procedures allow a detailed analysis of the transfer efficiency within a specific implementation of the Förster model for polymeric donors. The experimental values of the critical radius R0, ranging from 1.3 to 2.5 nm for the different blends, are in good agreement with theory for a wide interval of the physical and spectroscopic parameters. This suggests that other mechanisms for excitation transfer do not play a significant role in these materials.  相似文献   
20.
A novel bifunctional acrylamido‐based reversible addition–fragmentation chain transfer (RAFT) chain‐transfer agent (CTA), N,N′‐ethylenebis[2‐(thiobenzoylthio)propionamide] (CTA2), has been synthesized and used for the controlled free‐radical polymerization of N,N‐dimethylacrylamide (DMA). A comparative study of CTA2 and the monofunctional CTA N,N‐dimethyl‐s‐thiobenzoylthiopropionamide (CTA1) has been conducted. Polymerizations mediated by CTA1 result in poly(N,N‐dimethylacrylamide) (PDMA) homopolymers with unimodal molecular weight distributions, whereas CTA2 yields unimodal, bimodal, and trimodal distributions according to the extent of conversion. The multimodal nature of the PDMAs has been attributed to termination events and/or chains initiated by primary radicals. The RAFT polymerization of DMA with CTA2 also results in a prolonged induction period that may be attributed to the higher local concentration of dithioester functionalities early in the polymerization. A series of ω‐ and α,ω‐dithioester‐capped PDMAs have been prepared in organic media and subsequently employed as macro‐CTAs for the synthesis of diblock and triblock copolymers in aqueous media with the zwitterionic monomer 3‐[2‐(N‐methylacrylamido)‐ethyldimethylammonio] propane sulfonate (MAEDAPS). Additionally, an ω‐dithioester‐capped MAEDAPS homopolymer has been used as a macro‐CTA for the block polymerization of DMA. To our knowledge, this is the first example of a near‐monodisperse, sulfobetaine‐containing block copolymer prepared entirely in aqueous media. The diblock and triblock copolymers form aggregates in pure water that can be dissociated by the addition of salt, as determined by 1H NMR spectroscopy and dynamic light scattering. In pure water, highly uniform, micellelike aggregates with hydrodynamic diameters of 71–93 nm are formed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1262–1281, 2003  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号