首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50940篇
  免费   17388篇
  国内免费   59篇
化学   61528篇
晶体学   53篇
力学   2304篇
数学   3171篇
物理学   1331篇
  2024年   459篇
  2023年   4755篇
  2022年   1610篇
  2021年   2789篇
  2020年   5140篇
  2019年   2555篇
  2018年   2541篇
  2017年   657篇
  2016年   6115篇
  2015年   6103篇
  2014年   5498篇
  2013年   5716篇
  2012年   3483篇
  2011年   1151篇
  2010年   3747篇
  2009年   3709篇
  2008年   1162篇
  2007年   845篇
  2006年   157篇
  2005年   98篇
  1997年   98篇
  1996年   101篇
  1995年   188篇
  1994年   126篇
  1993年   251篇
  1992年   130篇
  1988年   141篇
  1987年   117篇
  1986年   94篇
  1985年   112篇
  1984年   119篇
  1983年   116篇
  1982年   143篇
  1981年   172篇
  1980年   212篇
  1979年   212篇
  1978年   220篇
  1977年   339篇
  1976年   398篇
  1975年   484篇
  1974年   503篇
  1973年   324篇
  1972年   457篇
  1971年   417篇
  1970年   626篇
  1969年   459篇
  1968年   502篇
  1967年   120篇
  1966年   95篇
  1963年   112篇
排序方式: 共有10000条查询结果,搜索用时 3 毫秒
971.
A variety of different low-coordinate iron selenide complexes is reported. These are obtained by reaction of the linear iron(I) silylamide K{18c6}[Fe(N(Dipp)SiMe3)2] (Dipp=2,6-diisopropylphenyl) with red selenium. Careful adjustment of the reaction conditions results in the formation of unique low-coordinate selenido iron complexes, namely a monoselenide bridged [2Fe−1Se]2+ complex, as well as mononuclear iron per- and triselenides. Further, C−H bond activation of one of the silylamide ligands by a putative terminal iron monoselenide is observed.  相似文献   
972.
Cyclopropane, dihydropyrrole, and azepane ring systems were synthesized conveniently from sulfinate-tethered triazoles. The divergent synthetic strategy started with the unique 1,3-sulfinate migration of an α-imino carbene. The efficient reaction allowed control of the zwitterion bearing multiple reactive sites depending on the increased stability of the resulting carbocation and anion. The sulfinate was converted to a sulfone after the group migration, and a stable anion bearing two electron-withdrawing groups was thus formed. Catalytic amounts of iodide acted as a switch for the synthesis of cyclopropanes and dihydropyrroles. The reaction merits including readily available substrates, mild reaction conditions, and excellent functional group compatibility qualified this protocol a possible synthetic tool for cyclic compounds, especially for N-heterocycles.  相似文献   
973.
Transition-metal-catalyzed oxidative C−H amination reactions are among the most attractive topics in organic synthesis to construct nitrogen-containing motifs. The challenge is that most of these reactions employed stoichiometric oxidants to achieve satisfied catalytic efficiencies. Herein, we report a Pd(II)/LA-catalyzed (LA: Lewis acid) oxidative C−H amination reaction of 2-acetaminobiphenyls to construct carbazoles by using dioxygen balloon as the sole oxidant source, and the presence of LA sharply improved the catalytic efficiency of Pd(OAc)2. Remarkably, in certain cases, the deacetylation of the annulation product happened under standard conditions to afford free carbazoles as the final product. The H/D exchange studies confirmed the reversibility of C−H activation and also disclosed multiple C−H activation sites by using −NAc and −NTs as the directing groups. In addition, the palladacycle compound was identified through 1H NMR characterizations and proved to be the intermediate prior to the carbazole formation.  相似文献   
974.
Different types of natural K+ channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K+ channels by rebuilding the core modules of natural K+ channels in artificial systems. All the channels displayed high selectivity for K+ over Na+ and exhibited a selectivity sequence of K+≈Rb+ during the transport process, which is highly consistent with the cation permeability characteristics of natural K+ channels. More importantly, these artificial channels could be efficiently inserted into cell membranes and mediate the transmembrane transport of K+, disrupting the cellular K+ homeostasis and eventually triggering the apoptosis of cells. These findings demonstrate that, by rebuilding the core modules of natural K+ channels in artificial systems, the structures, transport behaviors, and physiological functions of natural K+ channels can be mimicked in synthetic channels.  相似文献   
975.
A photocatalytic self-(3+2) cycloaddition of vinyldiazo compounds is described, which provides cyclopentene derivatives with conservation of one diazo functional group. Experimental insights and density functional theory indicate that the reaction is triggered by an unusual single electron oxidation of vinyldiazo compounds, while the photolysis for the generation of free carbene species is not involved. The synthetic applications of the resulting cyclopentenyl α-diazo compounds were demonstrated based on the rich chemistry of the diazo functional group.  相似文献   
976.
The conical intersection (CI) governs the ultra-fast relaxation of excited states in a radiationless manner and are observed mainly in photochemical processes. In the current work, we investigated the effects of substituents on the reaction dynamics for the conversion of gauche-1,3-butadiene to bicyclobutane via photochemical electrocyclization. We incorporated both electron withdrawing (−F) and donating (−CH3) groups in the conjugated system. In our study, we optimized the minimum energy conical intersection (MECI) geometries using the multi-configurational state-averaged CASSCF approach, whereas, to study the ground state reaction pathways for the substituted derivatives, dispersion corrected, B3LYP-D3 functional was used. The non-adiabatic surface hopping molecular dynamics simulations were performed to observe the behaviour of electronic states involved throughout the photoconversion process. The results obtained from the multi-reference second-order perturbation correction of energy at the XMS-CASPT2 level of theory, topography analysis, and non-adiabatic dynamics suggest that the −CH3 substituted derivatives can undergo faster thermal conversion to the product in the ground state with a smaller activation energy barrier compared to −F substituted derivative. Our study also reveals that the GBUT to BIBUT conversion follows both conrotatory and disrotatory pathways, whereas, on substitution with −F or −CH3, the conversion proceeds via the conrotatory pathway.  相似文献   
977.
Reduction of the cobalt(II) chloride complex, Ph2B(tBuIm)2Co(THF)Cl ( 1 ) in the presence of tBuN≡C affords the diamagnetic, square planar cobalt(I) complex Ph2B(tBuIm)2Co(C≡NtBu)2 ( 2 ). This is a rare example of a 16-electron cobalt(I) complex that is structurally related to square planar noble metal complexes. Accordingly, the electronic structure of 2 , as calculated by DFT, reveals that the HOMO is largely dz2 in character. Complex 2 is readily oxidized to its cobalt(II) congener [Ph2B(tBuIm)2Co(C=NtBu)2]BPh4 ( 3 -BPh4), whose EPR spectral parameters are characteristic of low-spin d7 with an unpaired electron in an orbital of dz2 parentage. This is also consistent with the results of DFT calculations. Despite its 16-electron configuration and the dz2 parentage of the HOMO, the only tractable reactions of 2 involve one electron oxidation to afford 3 .  相似文献   
978.
Linear polycyclic systems are promising candidates in the area of organic electronics. Herein, we present the syntheses of three azulene-indole (AzIn) fused polycyclic heteroaromatics (PHAs), AzIn - 1 , AzIn - 2 and DGAzIn , which have nitrogens and nonhexagonal rings simultaneously. The chemical structures, optical and electrochemical properties of three AzIn-based PHAs have been investigated, as well as their protonation behaviors with trifluoroacetic acid (TFA). All three AzIn-based PHAs exhibit narrow optical band gaps with moderate to good air stability, anti-Kasha emission and reversible stimuli-responsiveness. Furthermore, these straightforward and simple synthetic routes would provide a new entry for constructing novel azulene-embedded π-conjugates, especially for the seven-membered ring of azulene unit, wherein the regioselective transformation is not well developed.  相似文献   
979.
An efficient Rh(III)-catalyzed C−H alkenylation of N-protected isoquinolone with maleimides is reported. The carbonyl group of isoquinolone acts as an inherent directing group. Various N-substituents in the maleimide, including alkyl, aryl, and even H and −OH, were well tolerated under the developed reaction condition. This protocol showed broad substrate scope, good selectivity, and excellent yields. Hammett plot is also drawn to check the effect of substituents on the reaction progress.  相似文献   
980.
The production of green hydrogen through photocatalytic water splitting is crucial for a sustainable hydrogen economy and chemical manufacturing. However, current approaches suffer from slow hydrogen production (<70 μmol ⋅ gcat−1 ⋅ h−1) due to the sluggish four-electrons oxygen evolution reaction (OER) and limited catalyst activity. Herein, we achieve efficient photocatalytic water splitting by exploiting a multifunctional interface between a nano-photocatalyst and metal–organic framework (MOF) layer. The functional interface plays two critical roles: (1) enriching electron density directly on photocatalyst surface to promote catalytic activity, and (2) delocalizing photogenerated holes into MOF to enhance OER. Our photocatalytic ensemble boosts hydrogen evolution by ≈100-fold over pristine photocatalyst and concurrently produces oxygen at ideal stoichiometric ratio, even without using sacrificial agents. Notably, this unique design attains superior hydrogen production (519 μmol ⋅ gcat−1 ⋅ h−1) and apparent quantum efficiency up to 13-fold and 8-fold better than emerging photocatalytic designs utilizing hole scavengers. Comprehensive investigations underscore the vital role of the interfacial design in generating high-energy photoelectrons on surface-degenerate photocatalyst to thermodynamically drive hydrogen evolution, while leveraging the nanoporous MOF scaffold as an effective photohole sink to enhance OER. Our interfacial approach creates vast opportunities for designing next-generation, multifunctional photocatalytic ensembles using reticular chemistry with diverse energy and environmental applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号