首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   301165篇
  免费   16171篇
  国内免费   927篇
化学   195642篇
晶体学   3878篇
力学   11980篇
综合类   2篇
数学   30109篇
物理学   76652篇
  2023年   5113篇
  2022年   3978篇
  2021年   6082篇
  2020年   8984篇
  2019年   6789篇
  2018年   4892篇
  2017年   3041篇
  2016年   9670篇
  2015年   8278篇
  2014年   9021篇
  2013年   16440篇
  2012年   11347篇
  2011年   11089篇
  2010年   10048篇
  2009年   9932篇
  2008年   10069篇
  2007年   9903篇
  2006年   8506篇
  2005年   7922篇
  2004年   7054篇
  2003年   6266篇
  2002年   6181篇
  2001年   7243篇
  2000年   5385篇
  1999年   4247篇
  1998年   3573篇
  1997年   3663篇
  1996年   3381篇
  1995年   3294篇
  1994年   3038篇
  1993年   3222篇
  1992年   3407篇
  1991年   3413篇
  1990年   3202篇
  1989年   3172篇
  1988年   3292篇
  1987年   3132篇
  1985年   4082篇
  1984年   4249篇
  1983年   3500篇
  1982年   3878篇
  1981年   3797篇
  1980年   3699篇
  1979年   3742篇
  1978年   3975篇
  1977年   3907篇
  1976年   4177篇
  1975年   3833篇
  1974年   3964篇
  1973年   4120篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Employing radical bridges between anisotropic metal ions has been a viable route to achieve high-performance single-molecule magnets (SMMs). While the bridges have been mainly considered for their ability to promote exchange interactions, the crystal-field effect arising from them has not been taken into account explicitly. This lack of consideration may distort the understanding and limit the development of the entire family. To shed light on this aspect, herein we report a theoretical investigation of a series of N -radical-bridged diterbium complexes. It is found that while promoting strong exchange coupling between the terbium ions, the N -radical induces a crystal field that interferes destructively with that of the outer ligands, and thus reduces the overall SMM behavior. Based on the theoretical results, we conclude that the SMM behavior in this series could be further maximized if the crystal field of the outer ligands is designed to be collinear with that of the radical bridge. This conclusion can be generalized to all exchange-coupled SMMs.  相似文献   
3.
Intricate behaviour of one-electron potentials from the Euler equation for electron density and corresponding gradient force fields in crystals was studied. Channels of locally enhanced kinetic potential and corresponding saddle Lagrange points were found between chemically bonded atoms. Superposition of electrostatic and kinetic potentials and electron density allowed partitioning any molecules and crystals into atomic - and potential-based -basins; -basins explicitly account for the electron exchange effect, which is missed for -ones. Phenomena of interatomic charge transfer and related electron exchange were explained in terms of space gaps between zero-flux surfaces of - and -basins. The gap between - and -basins represents the charge transfer, while the gap between - and -basins is a real-space manifestation of sharing the transferred electrons caused by the static exchange and kinetic effects as a response against the electron transfer. The regularity describing relative positions of -, -, and - basin boundaries between interacting atoms was proposed. The position of -boundary between - and -ones within an electron occupier atom determines the extent of transferred electron sharing. The stronger an H⋅⋅⋅O hydrogen bond is, the deeper hydrogen atom's -basin penetrates oxygen atom's -basin, while for covalent bonds a -boundary closely approaches a -one indicating almost complete sharing of the transferred electrons. In the case of ionic bonds, the same region corresponds to electron pairing within the -basin of an electron occupier atom.  相似文献   
4.
The formation of transition metal (M) carbides MxCy and trends of their stability are systematically investigated using the USPEX code within the DFT.  相似文献   
5.
Construction of receptors with binding sites of specific size, shape, and functional groups is important to both chemistry and biology. Covalent imprinting of a photocleavable template within surface–core doubly cross‐linked micelles yielded carboxylic acid‐containing hydrophobic pockets within the water‐soluble molecularly imprinted nanoparticles. The functionalized binding pockets were characterized by their binding of amine‐ and acid‐functionalized guests under different pH values. The nanoparticles, on average, contained one binding site per particle and displayed highly selective binding among structural analogues. The binding sites could be modified further by covalent chemistry to modulate their binding properties.  相似文献   
6.
On the Statistical Calibration of Physical Models   总被引:1,自引:0,他引:1       下载免费PDF全文
We introduce a novel statistical calibration framework for physical models, relying on probabilistic embedding of model discrepancy error within the model. For clarity of illustration, we take the measurement errors out of consideration, calibrating a chemical model of interest with respect to a more detailed model, considered as “truth” for the present purpose. We employ Bayesian statistical methods for such model‐to‐model calibration and demonstrate their capabilities on simple synthetic models, leading to a well‐defined parameter estimation problem that employs approximate Bayesian computation. The method is then demonstrated on two case studies for calibration of kinetic rate parameters for methane air chemistry, where ignition time information from a detailed elementary‐step kinetic model is used to estimate rate coefficients of a simple chemical mechanism. We show that the calibrated model predictions fit the data and that uncertainty in these predictions is consistent in a mean‐square sense with the discrepancy from the detailed model data.  相似文献   
7.
It has recently been suggested that the oxidation states of Ir run from the putative ?III in the synthesized solid Na3[Ir(CO)3] to the well‐documented +IX in the species IrO4+. Furthermore, [Ir(CO)3]3? was identified as an 18‐electron species. A closer DFT study now finds support for this picture: The orbitals spanned by the 6s,6p,5d orbitals of the iridium are all occupied. Although some have considerable ligand character, the deviations from 18 e leave the orbital symmetries unchanged. The isoelectronic systems from Os?IV to Au?I behave similarly, suggesting further possible species. To paraphrase Richard P. Feynmann “there is plenty of room at the bottom”.  相似文献   
8.
Ethynylpyridine polymers and oligomers consisting of 4‐substituted pyridine rings linked by acetylene bonds at the 2‐ and 6‐positions have been investigated. Ethynylpyridine oligomers covalently linked with a glycosyl chiral template form chiral helical complexes by intramolecular hydrogen bonding, in which the chirality of the template is translated to the helix. With a view to fixation of the chiral architecture, D /L ‐galactosyl‐ and D /L ‐mannosyl‐linked ethynylpyridine oligomers have been developed with 4‐(3‐butenyloxy)pyridine units having alkene side chains. The helical structures are successfully stapled by alkene metathesis of the side chains. Subsequent removal of the chiral templates by acidolysis produces template‐free stapled oligomers. The chiral, template‐free, stapled oligomers show chiral helicity, which is resistant to polar solvents and heating.  相似文献   
9.
The so‐called magic methyl effect significantly boosts the bioactivities and physical properties of pharmacologically active drugs. Direct introduction of the methyl group by C?H activation was accomplished with a versatile iron catalyst, which enabled the C?H methylation of (hetero)benzamides, anilides, alkenes, and even alkanes by triazole assistance in a chemo‐, site‐ and diastereo‐selective fashion.  相似文献   
10.
This paper deals with a systematic density functional theory (DFT) study aiming to unravel the mechanism of the thyroxine (T4) conversion into 3,3′,5‐triiodothyronine (rT3) by using different bio‐inspired naphthyl‐based models, which are able to reproduce the catalytic functions of the type‐3 deiodinase ID‐3. Such naphthalenes, having two selenols, two thiols, and a selenol–thiol pair in peri positions, which were previously synthesized and tested in their deiodinase activity, are able to remove iodine selectively from the inner ring of T4 to produce rT3. Calculations were performed including also an imidazole ring that, mimicking the role of the His residue, plays an essential role deprotonating the selenol/thiol moiety. For all the used complexes, the calculated potential energy surfaces show that the reaction proceeds via an intermediate, characterized by the presence of a X?I?C (X=Se, S) halogen bond, whose transformation into a subsequent intermediate in which the C?I bond is definitively cleaved and the incipient X?I bond is formed represents the rate‐determining step of the whole process. The calculated trend in the barrier heights of the corresponding transition states allows us to rationalize the experimentally observed superior deiodinase activity of the naphthyl‐based compound with two selenol groups. The role of the peri interactions between chalcogen atoms appears to be less prominent in determining the deiodination activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号