首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40690篇
  免费   15771篇
  国内免费   79篇
化学   53449篇
晶体学   37篇
力学   1093篇
数学   1208篇
物理学   753篇
  2024年   422篇
  2023年   4246篇
  2022年   1403篇
  2021年   2406篇
  2020年   4671篇
  2019年   2219篇
  2018年   2370篇
  2017年   602篇
  2016年   5542篇
  2015年   5503篇
  2014年   4921篇
  2013年   5088篇
  2012年   3060篇
  2011年   1004篇
  2010年   3321篇
  2009年   3264篇
  2008年   1044篇
  2007年   741篇
  2006年   202篇
  2005年   147篇
  2004年   104篇
  2003年   104篇
  2002年   71篇
  1997年   62篇
  1996年   69篇
  1995年   137篇
  1994年   80篇
  1993年   196篇
  1992年   98篇
  1991年   70篇
  1988年   97篇
  1987年   79篇
  1985年   66篇
  1984年   86篇
  1983年   74篇
  1982年   91篇
  1981年   98篇
  1980年   111篇
  1979年   116篇
  1978年   118篇
  1977年   184篇
  1976年   190篇
  1975年   191篇
  1974年   203篇
  1973年   118篇
  1972年   157篇
  1971年   125篇
  1970年   213篇
  1969年   129篇
  1968年   138篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
861.
The formation of weakly bound molecular complexes between dimethyl ether (DME) and the trifluoromethyl halides CF3Cl, CF3Br and CF3I dissolved in liquid argon and in liquid krypton is investigated, using Raman and FTIR spectroscopy. For all halides evidence is found for the formation of C? X???O halogen‐bonded 1:1 complexes. At higher concentrations of CF3Br, a weak absorption due to a 1:2 complex is also observed. Using spectra recorded at temperatures between 87 and 125 K, the complexation enthalpies for the complexes are determined to be ?6.8(3) kJ mol?1 (DME?CF3Cl), ?10.2(1) kJ mol?1 (DME?CF3Br), ?15.5(1) kJ mol?1 (DME?CF3I), and ?17.8(5) kJ mol?1 [DME(?CF3Br)2]. Structural and spectral information on the complexes is obtained from ab initio calculations at the MP2/ 6‐311++G(d,p) and MP2/6‐311++G(d,p)+LanL2DZ* levels. By applying Monte Carlo free energy perturbation calculations to account for the solvent influences, and statistical thermodynamics to estimate the zero‐point vibrational and thermal influences, the ab initio complexation energies are converted into complexation enthalpies for the solutions in liquid argon. The resulting values are compared with the experimental data deduced from the cryosolutions.  相似文献   
862.
A series of symmetrically and unsymmetrically substituted octa‐2,4,6‐triyne‐1,8‐diol derivatives with benzoyl, 4‐dodecyloxybenzoyl, as well as perfluorobenzoyl substituents were prepared and investigated with respect to their crystal structures and topochemical polymerizability. Single‐crystal structures for several of these triacetylene monomers have been obtained and proved that the perfluorophenyl–phenyl interactions played a decisive role in the molecular packing. As a consequence of the geometric requirements imposed by the perfluorophenyl–phenyl interactions, packing parameters appropriate for a topochemical triacetylene polymerization in the sense of either a 1,6‐ or a 1,4‐polyaddition along different crystallographic axes were observed in two cases, and UV irradiation led to successful polymerization. Raman as well as solid‐state 13C NMR spectra of the obtained polymers revealed that the polymerization had predominantly proceeded in the form of a 1,4‐polyaddition.  相似文献   
863.
864.
We have carried out a theoretical investigation of the Dötz reaction between acetylene and a series of chromium Fischer‐type carbenes [(CO)5Cr?C(X)R] with different representative substituents (R=CH?CH2, Ph) and heteroatom ligands (X=OH, NH2, OCH3, N(CH3)2) by using density functional theory with the B3LYP functional. We have studied the Dötz and chromahexatriene mechanisms of benzannulation and also the reaction mechanism leading to cyclopentannulation. For the benzannulation, it was found that the most likely mechanism in the case of vinylcarbenes is the chromahexatriene route, whereas for phenylcarbenes, the Dötz route via a ketene intermediate is clearly the most favorable. The reactions leading to the cyclopentannulated and benzannulated products are more exothermic with vinylcarbenes than with phenylcarbenes and also more exothermic with alkoxycarbenes than with aminocarbenes. The relative stability of the cyclopentannulated products as compared with the benzannulated products increases for bulkier X substituents and on going from alkoxy‐ to aminocarbenes. The kinetic data concurs with the experimental product distribution found for vinylcarbenes, by which mainly benzannulated products are obtained, and dimethylaminophenylcarbenes, which lead exclusively to cyclopentannulated adducts.  相似文献   
865.
A series of epothilone B and D analogues bearing isomeric quinoline or functionalized benzimidazole side chains has been prepared by chemical synthesis in a highly convergent manner. All analogues have been found to interact with the tubulin/microtubule system and to inhibit human cancer cell proliferation in vitro, albeit with different potencies (IC50 values between 1 and 150 nM ). The affinity of quinoline‐based epothilone B and D analogues for stabilized microtubules clearly depends on the position of the N‐atom in the quinoline system, while the induction of tubulin polymerization in vitro appears to be less sensitive to N‐positioning. The potent inhibition of human cancer cell growth by epothilone analogues bearing functionalized benzimidazole side chains suggests that these systems might be conjugated with tumor‐targeting moieties to form tumor‐targeted prodrugs.  相似文献   
866.
ScIII‐doped solids based on zeolite materials have been investigated for the first time as catalysts in organic synthesis. ScIII–USY zeolite proved to be a novel and very efficient heterogeneous catalyst for the Mukaiyama aldol reaction. This easy‐to‐prepare catalyst exhibited wide scope and compatibility with functional groups and is very simple to use, easy to remove (by simple filtration), and is recyclable (up to three times without loss of activity).  相似文献   
867.
To investigate the effects of metal–ligand coordination on the molecular structure, internal structure, dimensions, and morphology of self‐assembled nanostructures, two nonperipherally octa(alkoxyl)‐substituted phthalocyanine compounds with good crystallinity, namely, metal‐free 1,4,8,11,15,18,22,25‐octa(butyloxy)phthalocyanine H2Pc(α‐OC4H9)8 ( 1 ) and its lead complex Pb[Pc(α‐OC4H9)8] ( 2 ), were synthesized. Single‐crystal X‐ray diffraction analysis revealed the distorted molecular structure of metal‐free phthalocyanine with a saddle conformation. In the crystal of 2 , two monomeric molecules are linked by coordination of the Pb atom of one molecule with an aza‐nitrogen atom and its two neighboring oxygen atoms from the butyloxy substituents of another molecule, thereby forming a Pb‐connected pseudo‐double‐decker supramolecular structure with a domed conformation for the phthalocyanine ligand. The self‐assembling properties of 1 and 2 in the absence and presence of sodium ions were comparatively investigated by scanning electronic microscopy (SEM), spectroscopy, and X‐ray diffraction techniques. Intermolecular π–π interactions between metal‐free phthalocyanine molecules led to the formation of nanoribbons several micrometers in length and with an average width of approximately 100 nm, whereas the phthalocyaninato lead complex self‐assembles into nanostructures also with the ribbon morphology and micrometer length but with a different average width of approximately 150 nm depending on the π–π interactions between neighboring Pb‐connected pseudo‐double‐decker building blocks. This revealed the effect of the molecular structure (conformation) associated with metal–ligand (Pb? Nisoindole, Pb? Naza, and Pb? Obutyloxy) coordination on the dimensions of the nanostructures. In the presence of Na+, additional metal–ligand (Na? Naza and Na? Obutyloxy) coordination bonds formed between sodium atoms and aza‐nitrogen atoms and the neighboring butyloxy oxygen atoms of two metal‐free phthalocyanine molecules cooperate with the intrinsic intermolecular π–π interactions, thereby resulting in an Na‐connected pseudo‐double‐decker building block with a twisted structure for the phthalocyanine ligand, which self‐assembles into twisted nanoribbons with an average width of approximately 50 nm depending on the intertetrapyrrole π–π interaction. This is evidenced by the X‐ray diffraction analysis results for the resulting aggregates. Twisted nanoribbons with an average width of approximately 100 nm were also formed from the lead coordination compound 2 in the presence of Na+ with a Pb‐connected pseudo‐double‐decker as the building block due to the formation of metal–ligand (Na? Naza and Na? Obutyloxy) coordination bonds between additionally introduced sodium ions and two phthalocyanine ligands of neighboring pseudo‐double‐decker building blocks.  相似文献   
868.
869.
870.
The mechanism of the allylation reaction between 4‐chloroacetophenone and pinacol allylboronates catalyzed by ZnEt2 with alcohols was investigated using density functional theory (DFT) at the M05‐2X/6‐311++G(d,p) level. The calculations reveal that the reaction prefers to proceed through a double γ‐addition stepwise reaction mechanism rather than a Lewis acid‐catalyzed concerted one. The intermediate with a four‐coordinated boron center, which is formed through proton transfer from EtOH to the ethyl group of ZnEt2 mediated by the boron center, is the active species and an entrance for the catalytic cycle. The latter is composed of three elementary steps: 1) boron to zinc transmetalation leading to the formation of allylzincate species, 2) electrophilic addition of ketone to allylzincate species, and 3) generation of the final product with recovery of the catalyst. The boron to zinc transmetalation step has the largest energy barrier of 61.0 kJ mol?1 and is predicted to be the rate‐determining step. The calculations indicate that the additive EtOH plays important roles both in lowering the activation free energy for the formation of the four‐coordinated boron active intermediate and in transforming the low catalytic activity ZnEt2 into high activity zinc alkoxide species. The alcohols with a less sterically encumbering R group might be the effective additives. The substituted groups on the allylboronates might primarily affect the boron to zinc transmetalation, and the allylboronates with substituents on the Cγ atom is poor in reactivity. The comparison of the catalytic effect between the zinc compounds investigated suggest that Zn(OEt)2, Zn(OH)2, and ZnF2 exhibit higher catalytic efficiency for the boron to zinc transmetalation due to the activation of the B? Cα bond through orbital interactions between the p orbitals of the EtO, OH, F groups and the empty p orbital of the boron center.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号